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During the past year, progress has been made in (1) the interpretation of
pressure—induced resonances; (2) the theory of the interaction of broadband light with
atoms; (3) the theory of coherent transients and (4) the theory of laser cooling below the
Doppler limit.

1. Interpretation of pressure—induced resonances. (P.R. Berman).

Some of our earlier work on the interpretation of pressure—induced resonances using
both semi—classical and quantized field dressed—atom approaches has been
published.l*'z*’3* This work has been carried out in collaboration with G. Grynberg of
the Ecole Normale in Paris. In the past year, we hav. coipleted this study by comparing
calculations of pressure—induced resonances in four—wave mixing signals using both the
Schrodinger and Heisenberg pictures in a folly quantized—field a,pproach.'ﬂ’5 It is shown
that the calculation takes only a few lines in the Heisenberg picture, but is much more
involved in the Schrodinger picture. We believe that this is a general result for situations
in which atomic state operators, averaged over all modes of the radiation field, are being
evaluated.

While the Schrodinger calculation is more difficult, it brings out new features of the
problem that are hidden in the Heisenberg picture. In the case of the pressure—induced
resonances, the Schrodinger calculation provides new insights into the origin of the
resonances. It is shown that the coherent four—wave mixing signals arise from interference
of signals emitted at different atomic sites — this clearly shows the cooperative nature of
the emission. The pressure—induced resonances arise from specific terms in which vacuum
field modes other than those involved in the four—wave mixing signal are produced.5 These
results have implications for probe gain or absorption in the pressence of collisions. The
Schrodinger picture may also prove useful in understanding mechanisms involved in laser
cooling.

* An asterisk indicates that a reprint or preprint of this article has been forwarded to
the Scientific Officer with this report. Reprints of articles have been furnished to

DTIC with this report. Preprints or reprints of these articles are available on
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Our work has also led us to compare the Schrodinger and Heisenberg picture
~ calculations of resonance fluorescence in the presence of a strong field. Again, the
Schrodinger calculation is quite complicated and our work in this area is still in progress.

(2) Interaction of broadband light with atoms (V. Finkelstein, P.R. Berman).

The optical coherent transients that arise when a sample of two—level atoms is
irradiated by a sequence of two or three broad—bandwidth pulses were studied
theoretica.lly.ﬁ* The first two pulses are correlated with one another and can be strong
enough to saturaie the iwo—level atuwmic transition. Taking into account the effects o1
inhomogeneous and homogeneous broadening, we calculate the intensity of the transient
signals, emitted in different directions, as a function of delay time. In particular, it is
shown for strong excitation pulses, that the strongest signals exhibit a peak having a width
given by the cross—correlation time of the pulses, 1(1:2. The preliminary experimental

results obtained at Laboratoire Aime Cotton (France) by the group of J.—L. LeGouet
confirm our theoretical conclusions. In the case of two—pulse transient theory, the peak is
found to disappear when the Doppler width of the atomic ensemble becomes sufficiently
largeT*, in qualitative agreement with experiment.8

The optical coherent transients induced in a sample of threelevel atoms by
time—delayed fluctuating correlated pulses are also being considered. We have seen that
the three—level dynamics leads to a signal which, as a function of the delay time, depends
dramatically on the intensities of the excitation pulses. For strong pulses, the signal may

vary significantly on a time scale much smaller than réz. This effect may permit one to

obtain time resolution better than the cross—correlation time of the pulses. The results will
be submitted for publication in the near future. This work was carried out in collaboration
with P. Tchenio of Laboratoire Aime Cotton.

3. Theory of coherent transients (E. Block, P.R. Berman).

In trying to interpret the rotary echo data of A. Sza.bo,9 we have carried out a
detailed analysis of rotary echoes produced by atoms whose frequency is being perturbed in
a stochastic manner. Good agreement with Szabo’s data has been achieved and an article
is in preparation. The analysis has been extended to include rotary echoes whose "off"
time is arbitrarily long.




We have also analyzed the experiment of Itano et alm, who claim to have
demonstrated the quantum Zeno effect, inhibition of a transition produced by continuous
observation of a system. It is shown that, while the Itano interpretation has some validity,
the same conclusion is reached simply by studying the dynamics of the three—level system
they consider, without any mention of wave—packet collapse. Moreover, their experiment
does not really address the quantum Zeno paradox11 — if one continuously observe a
particle in a bubble chamber, why doesn’t he affect its lifetime? We are proposing an
atomic analogue to the bubble chamber experiment which should shed some new light on
the quantum Zeno paradox.

4. Laser cooling below the Doppler limit (P.R. Berman).

Recently, laser cooling below the so—called Doppler limit has been achieved.12 This
came as somewhat of a surprise since it was in contradiction with the predictions of
conventional theories. Subsequently, it was appreciated that the magnetic—state
degeneracy of the transition levels was a critical feature in cooling below the Doppler limit.
We have formulated a general theory for the interaction of several radiation fields with -
atoms having arbitrary level scheme_s.13*’14* The theory has been applied to a calculation
of the friction force in 1-D cooling of atoms below the Doppler limit, both in the absence
and presence of an external magnetic field. Analytic expressions have been obt;ained14
which are in agreement with previous numerical results.!® Our theory is formulated using
an irreducible tensor basis for density matrix elements; this formalism is very effective for
analyzing magnetically degenerate systems.

The formalism can also be applied to a study of collision effects in non—degenerate
four—wave mixing. We hope to show that optical pumping produces the apparent
discrepancy between theory and experiment observed in the four—wave mixing experiments

of Liu and Steel.16

5. Miscellaneous

* *
Earlier work on quantum ,jumps,17 the excliange collision kernel,18 and effects of
magnetic—state degeneracy in radiative collisions'?" have been published or submitted for

publication.




© ® N oo

11.
12.

13.

14.
15.

16.
17.
18.
19.

REFERENCES

P.R. Berman and G. Grynberg, Phys. Rev. A40, 6921 (1989).

C. Grynberg and P.R. Berman, Phys. Rev. A4l, 2677 (1990).

P.R. Berman and G. Grynberg, in Laser Spectroscopy IX; edited by M. Feld, A.
Mooradian and J.E. Thomas (Academic Press, New York, 1989) pp 68—70.

P.R. Berman, in Proceedings of Xth International Vauilov Conference on Nonlinear
Optics, to appear.

G. Grynberg and P.R. Berman, submitted to Phys. Rev. A.

V. Finkelstein and P.R. Berman, Phys. Rev. A41, 6193 (1990).

V. Finkelstein and P.R. Berman, Phys. Rev. Rapid. Comm. A42, 3145 (1990).

R. Beach, D. de Beer and S.R. Hartmann, Phys. Rev. A32, 3467 (1985).

T. Muramoto and S. Szabo, Phys. Rev. A38, 5928 (1989); A. Szabo, in Proceedings
of Xth International Vavilov Conference on Nonlinear Optics, to appear.

W.M. Itano, D.J. Heinzen, J.J. Bollinger, and D.J. Wineland, Phys. Rev. A34, 3190
(1990).

B. Misra and E.C.G. Sudarshan, J. Math. Phys. 18, 756 (1977).

See, for example, P.D. Lett, W.D. Phillips, S.L. Rolston, C.E. Tanner, R.N. Watts,
and C.I. Westbrook, J. Opt. Soc. Amer. B6, 2084 (1989); J. Dalibard and C.
Cohen—Tannoudji, J. Opt. Soc. Amer. B6, 2023 (1989); P.J. Ungar, D.S. Weiss, E.
Riis, and S. Chu, J. Opt. Soc. Amer. B6, 2058 (1989); D.S. Weiss, E. Riis, Y.
Shevy, P.J. Ungar and S. Chu, J. Opt. Soc. Amer. B6, 2072 (1989).

P.R.Berman, in Proceedings of Workshop on Light—Induced Kinetic Effects, to
appear.

P.R. Berman, submitted to Phys. Rev. A.

D. Sheehy, S—Q. Shang, P. van der Staten, S. Hatamian and H. Metcalf, Phys. Rev.
Lett. 64, 858 (1990); S—Q. Shang, B. Sheehy, P. van der Straten and H. Metcalf,
Phys. Rev. Lett. 65, 317 (1990).

J. Liu and D.G. Steel, Phys. Rev. A38, 4639 (1988).

K. Yamada and P.R. Berman, Phys. Rev. A41, 2677 (1990).

G. Rogers and P.R. Berman, submitted to Phys. Rev. A.

P.R. Berman, F. Schuller and G. Neinhuis, Phys. Rev. A42, 459 (1990).

A list of publications and invited talks is appended.




Papers published in refereed journals

1. P. R. Berman and G.Grynberg, "Quantized field approach to pressure induced
resonances,”" Phys. Rev. A40, 6921—6930 (1989) (additional support from NSF).

2. K. Yamnada and P. R. Berman, "Macroscopic quantum jumps from a two—atom
system," Phys. Rev. A41, 453462 (1990) (additional support from NSF).
3. G. Grynberg and P. R. Berman, Pressure—induced extra resonances in nonlinear

spectroscopy," Phys. Rev. A41, 26772686 (1990) (additional support from NSF).
4. V. Finkelstein and P. R. Berman, "Optical coherent transients induced by
time—delayed fluctuating pulses. I: three—pulse transients," Phys. Rev. A41,
6193—6224 (1990) (additional support from NSF).
5. P. R. Berman, F. Schuller, and G. Neinhuis, "Generation of magnetic polarization
in light induced collisional energy transfer," Phys. Rev. A42, 459-473 (1990).

Chapters of books published

P. R. Berman and G. Grynberg, "Dressed—atom approach to collision—induced
resonances," in Laser Spectoscopy IX, edited by M. Feld, A. Mooradian and J. E.
Thomas (Academic Press, New York, 1989) pp. 68—70 (additional support from

NSF).
Papers submitted to refereed journals
1. P. R. Berman, "Nonlinear spectroscopy and laser cooling," submitted to Phys. Rev.
A.

2. V. Finkelstein and P. R. Berman, "Optical transient signal induced by strong
fluctuating pulses," Phys. Rev. Rapid Comm. A42, 3145 (1990).

3. G. Rogers and P. R. Berman, "The exchange collision kernel," submitted to Phys.
Rev. A.

4. G. Grynberg and P. R. Berman, "Quantized—field approach to parametric mixing
and pressure—induced resonances: the Schrodinger picture," submitted to Phys. Rev.
A.

All the above articles acknowledge additional support from NSF.




Papers submitted as chapters of books

1. V. Finkelstein and P. R. Berman, "Stimulated photon echo induced by broad
bandwidth pulses," in Coherence and Quantum Optics 6, edited by J. H. Eberly, L.
Mandel and E. Wolf.

2. K. Yamada and P. R. Berman, "Macroscopic quantum jumps form a two—atom
system," in Coherence and Quantum Optics 6, edited by J. H. Eberly, L. Mandel
and E. Wolf.

3. V. Finkelstein, "Excitation into a Quasicontinuum by a Fluctuating Laser Field,"in
Coherence and Quantum Optics 6, edited by J. H. Eberly, L. Mandel and E. Wolf.

4. P. R. Berman, "Narrow resonances in laser spectroscopy," in Workshop on

Light—Induced Kinetic Effects, edited by E. Arimondo, C. Gabbanini, S. Gozzini, L.
Moi, and F. Strumia.

5. P. R. Berman, "Pressure—induced resonances in multiwave mixing," in Proceedings
of Xth International Vavilov Conference on Nonlinear Optics.

Papers 1,2,4,5 acknowledge additional support from NSF.

Invited papers
1. P. R. Berman, "Narrow resonances in laser spectroscopy," Workshop on
Light—Induced Kinetic Effects, Marina Marciana, Elba, Italy, 1-5 may,1990.
2. P. R. Berman, "Pressure—induced resonances in multiwave mixing," Xth
International Vavilov Conference on Nonlinear Optics, Novisibirsk, USSR, 31 May —

4 June,1990.




PHYSICAL REVIEW A VOLUME 41, NUMBER 11 1 JUNE 1990

Optical coherent transients induced by time-delayed fluctuating pulses:

Three-pulse transients
V. Finkelstein and P. R. Berman
Department of Physics, New York University, 4 Washington Place, New York, New York 10003
(Received 8 January 1990)

A theoretical analysis of the optical coherent transients that arise when a sampie of two-level
atoms is irradiated by a sequence of three broad-bandwidth pulses is presented. The first two pulses
have a relative delay time of order of the correlation time of the pulse fluctuations and are sent into
an atomic vapor from different directions. These pulses, whose temporal width is much greater
than the delay time. can be correlated with one another and can be strong enough to saturate the
two-level atomic transition. The third pulse is weak, noncorrelated with the first two, and is delayed
in time so that it does not overlap them. We present a detailed examination of the transient signal
that is produced when the third pulse is scattered by the spatial gratings in the population difference
of atoms created by the first two pulses. Taking into account the effects of inhomogeneous and
homogeneous broadening, we calculate the intensity of the transient signal, emitted in different
directions, as a function of delay time. The signal is found to depend dramatically on the intensities
of the excitation pulses. It is shown that, for strong excitation pulses, there is a direct dependence
of the signal on the cross-correlation time of pulses 7.2 that does not exist when the pulses are weak.
In particular, the strongest signals exhibit a peak of width of order 7> This peak can have a very
narrow dip near its maximum whose width is much smaller than 7', if the pulses are fully correlat-
ed. We develop a representation of the time evolution of the Bloch vector of a two-level atom,
driven by time-delayed pulses, that enables us to explain our results. In this representation, the two
time-delayed puises are replaced by two fully overlapping pulses having some effective amplitudes
and atomic field detunings.

I. INTRODUCTION - Atomic - 2

Experiments in which coherent transients are produced 'k—a" ‘i;' ::

by time-delayed, correlated, fluctuating optical pulses' ~'® ' ~

have received a great deal of attention in the last few Signals

years, owing to their potential as a source of subpi- (a)

cosecond time resolution. The advantage of using

broad-bandwidtn light lies in the fact that under certain

conditions, a time resolution may be achieved that is

equal to the autocorrelation time 7, of the applied fields. 1 Sianal

This autocorrelation time may be orders of magnitude - L LI ot

smaller than’ the pulse'duratlon 1. ' . 0 b2 tp tytzstp 43 hactps 1
A convenient experimental configuration for observing

such optical transients involves sending either two or (b)

three laser pulses into an atomic vapor. In this paperwe — _________

consider only three-pulse transients (PT-3). Two pulses b A

(which may be derived from a single laser), having wave

vectors k, (pulse 1) and k, (pulse 2), respectively, are sent g @

into a sample of two-level atoms [see Fig. 1(a)]. The wave

vectors are chosen such that |k,|=|k,/=k and s

0=1(k,,k,) << 1. Pulse 2 and pulse 1 have a relative time
delay denoted by t,,. For t;;>0 (1), <0), pulse 1 pre-
cedes (follows) pulse 2 [see Fig. 1(b)]. Under PT-3 condi-
tions these pulses create spatial gratings in the population
difference of atoms with Bragg vectors nk;=n(k;,—k,),
n=0,%1,... . These gratings are subsequently probed
by a thiru pulse with a wave vector k; that is time de-
layed by t,;>t,, +1, relative to the first excitation pulse.
The energy radiated in the directions k;+nk, is studied

4

()

FIG. 1. The three-pulse transient (PT-3) configuration. (a)
Angled-beam configuration. (b) The temporal sequence of
pulses: for ¢, >0 pulse 1 (wave vector k,) precedes pulse 2
(wave vector k,), the third pulse does not overlap the first two
pulses. (c) A two-level atom having transition frequency w,, is
driven by the pulses, each having central frequency w.

6193 ©1990 The American Physical Society
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as a function of ¢,;.

Although signals can be generated by scattering from
nth-order gratings, most experimental work has concen-
trated on the signals originating from the first-order grat-
ings (n =%1). For weak incident pulses or for fully
separated pulses, the first-order gratings provide the ma-
jor contribution to the signal. However, for strong, over-
lapping incident pulses, higher-order gratings begin to
contribute appreciably.

The early experimental results, 1710 sbtained for weak
incident fields, have been interpreted in the context of
perturbation theory. More recently, however, time-
delayed two-pulse'' and three-pulse transients'>”'* have
been examined under conditions in which at least one of
the pulses is strong; that is,

at, >1,

where a= f7,, and f is a Rabi frequency associated with
a laser field interacting with a two-level atem. The
three-pulse experiments are typically carried out at tem-
peratures 300-500 K using excitation puises having
1, =10 ns, and with low buffer gas pressures; consequent-
ly, the Doppler width A, =ku (u is the most probable
atomic speed) satisfies the inequalities

Ap>>t, TN T, (1.1)
where T, and T, are longitudinal and transverse relaxa-
tion times, respectively.

In the strong-field regime the signal energy as a func-
tion of the delay time t,, may depend on the correlation
time 7, itself,!*!> while the dependence of the signal on
the Doppler width of the atomic ensemble is minimal.
Such behavior differs sharply from that in a weak-field re-
gime when the signal strongly depends on the Doppler
width, and the correlation time does not play a separate
role in the effects under consideration. Currently the na-
ture of the phenomena observed in a strong-field regime
remains unclear.

Theoretical analysis of the experimental results brings
into play many profound theoretical problems concerned
with studies of the stochastic Bloch equations in the in-
tense field regime. A number of papers have been devot-
ed to this problem in the last twenty-five years'® % and
numerous effects have been discussed assuming fluctuat-
ing radiation fields (resonant fluorescence, double reso-
nance, multiphoton ionization, optical induction decay,
Hanle effect, etc.). In most of these calculations, the
response of an atomic ensemble to a fluctuating field has
been studied as a function of the noise properties of the
fields. In many cases the noise was assumed to be Marko-
vian in nature. The problem under consideration herein
differs in that atoms are subjected to two time-delayed
noise ficlds which may be correlated. Thus, the atoms re-
tain some memory of the first field when the second field
acts. Even if the noise of each field is Markovian, the
combined effect of the two fields is non-Markovian, in
general, owing to these memory effects. This feature
greatly complicates the calculations. Initial attempts at
solutions employed diagrammatic methods.'**' Later, a
decorrelation approximation®? was used and results were

V. FINKELSTEIN AND P. R. BERMAN -4l

obtained'’ in the limit of stationary atoms subjected to
fully correlated, time-delayed fields, one of which was
weak, while another was strong: a1, <<1<<ayt,
la,=If;1*r, (i=1,2), f, is Rabi frequency associated
with field i]. It was shown theoretically, and has been
confirmed experimentally, that under these conditions the
radiated energy W' (t,) exhibits a narrow dip centered
at t,,—0, superimposed on a broad background signal.
The dip has a width of order 7, and relative depth equal
to 0.5

This observation motivates us to consider the limiting,
but important, case in which the correlation and delay
times are sufficiently small to satisfy

Totp<<a 1,05 T, T, . (1.2)

No restriction is imposed on the ratio t,/r.. Under
these conditions we have found a closed form solution for
the signal energy, valid for arbitrary field intensities and
relaxation rates. Some direct dependence of the observed
signal on 7. will be shown to exist in the strong-field re-
gime; the interpretation of this effect is given in terms of
some additional detuning parameter that appears in the
Bloch equations as a result of the time delay of the pulses.
The conditions required for observation of the studied
phenomena are discussed.

In Sec. I we derive the laser fields and quantum sys-
tem to be considered, and present the general expressions
for the measured energy of the signal in the PT-3 case in
terms of a single-time, two-atom correlation function.
Using the Bloch vector model, in Sec. 11l we develop a
new representation which permits us to analyze the dy-
namics of a two-level atom driven by the time-delayed
pulses as if the pulses are fully overlapping. The equa-
tions for single-time two-atom correlation functions aver-
aged over field fluctuations, which are needed in the cal-
culation, are derived in Sec. IV. In Sec. V we describe a
general solution to the problem. A weak-relaxation limit
is discussed in Sec. VI. An explanation of the depen-
dence of the signal on timc delay ¢, is precerted in Sec.
VII and the relative dephasing of the Bloch vectors in a
strong-field regime that leads to the results obtained in
Sec. Vi is considered qualitatively. The results obtained
in a strong-relaxation limit are discussed in Sec. VIII.

II. BASIC ASSUMPTIONS AND EQUATIONS

A. Laser field

We consider an ensemble of two-level atoms each hav-
ing transition frequency w,, {¢xcited state b, ground state
a, as shown in Fig. 1(c)]. Atoms interact with two laser
pulses of duration ¢, time delayed relative to each other
by an interval t|;. These classical incident fields can be
represented as

—lw!

e

6(r,t)= 5

{ &, (explik, 1)
+Gz(t _t‘z)exp[i(wtlz +k2-l‘)]|

+c.c., 2.1}
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where, without loss of generalization, we take all fields
having parallel polarization. It is assumed that the
atom-field detuning, A=w,, —w, satisfies |A| <<w, and
aat &, and &, are slowly varying complex field ampli-
tudes satisfying

& /611676 clk,l

16,76,1.16,/6,| << m.w ,
where ¢ is the speed of light, L is a characteristic length
of the sample, and

kd=k1_kl .

We introduce the Rabi frequency f,=p,,& % "
(i =1,2) associated with field &;; u,, is the dipole mo-
ment matrix element of the a — b transition. Both of the
pulses are characterized by a broad spectrum, and the
amplitudes &, and &, and, consequently, the Rabi fre-
quencies f, and f, are treated as complex stationary sto-
chastic processes that may be correlated with each other.
In particular, we assume that

(frnfie—mN=ag,(n,

(fIOft = 1)) =aygplT), (2.2)
(fiUDf e =) =0, (fy()f,{t~1))=0,

and
(finfote—=1)=0, (f,(1)=(f(n))=0, .-

<f1‘(,)f:(lar)>:alzglz(r) N

where the average is over all possible realizations of the
fluctuating fields. The quantity g, (7) (i,j=12) is a
correlation function normalized such that

fo‘g,,(r)drzl, ij=1,2

and the autocorrelation parameters @, and a, are given
by

a,=f(nHr, i=1.2

while the cross-correlation parameter a,, that determines
the mutual coherence of the Rabi frequencies is equal to

a,=(ftnfn)r}*. (2.4)
Correlation times are defined by
/=g, 0. (2.5)

The cross-correlation time 2 cannot be larger than auto-
correlation times 7!',72?, and it follows that
2
alz
b=— (2.6}

which is a measure of the relative coherence of the pulses,
satisfies

0<d=<t.

For fully correlated pulses ® = 1, while for noncorrelated
pulses ®=0.

According to Eqgs. (2.2) and (2.3), the statistical proper-
ties of the total field (2.1) are characterized not only by
the correlation time 7/ but also by the delay time ¢,,, pro-
vided the correlation parameter ®+0. In this paper the
correlation times 7/ as well as the delay time r, are as-
sumed to be much smaller than any characteristic time in
the problem [see Eq. (1.2)], but can be comparable to
each other; that is

™ty <A t.a hay LAT T T, .7

In the three-pulse transient, the third pulse is assumed
to be weak (ayf, <<1), to have a broad bandwidth
(r*~7/), and to be uncorrelated with the first two
pulses. It is switched on after both the first two excita-
tion pulses and any transients associatea with them have
already died out. Equation (2.7) defines the delay times
for which the theory is applicable.

It is also assumed that the transverse Doppler effect is
negligible:

Ikl

——Apt, <1,
|k, ~°7
enabling us to set k,k,= 1(k, +k,)=k in certain expres-

sions.

B. Dynamical equations

In the rotating-wave approximation the following
equations then hold for density matrix elements of a
two-level atom having velocity v:

pr= v topt+Ypy,

pr="dp—v.py—Xps (2.8)
P3=—Yp ¥ Xp,—viipi—pi) s
where
p =2Relp,e Ly
pr=2Imip,e’ ™ 1T
Py=Paa " Pobr PuatPr =1,
and
X=X A0+X,(t —t,,).
Yin=Y () +Y,(t —1,,),
X,=—Re[f (e %], Y ,=—Im[f (e ],
2.9)

X2=—Re[f2(t—t|2)], YZ:—‘Inl[fy‘t_tlz)],

¢:kd'r_wt|2, 6=A+kLl y
fA0=p, 60, =12

and p,, is the population difference p, at thermal equilib-
rium. The transverse relaxation rate ¥, =T, ! can be ex-
pressed as the sum of the spontaneous relaxation rate,
v, =T, ', of level b and a collisional contribution y_,, as

Yi

Yr::—z_+7/coll .
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All the dependence on position of the atoms is contained
in the phase parameter ¢; the z axis is taken in the k,
direction.

Equations (2.8) can be represented as

ﬁm:%“mkpk+71p3e8m3, m=123, (2.10)
where
A4=[a,, ]=4°-L,
0 +5 Y
A°=[ap}— -8 0 -—x|, 2.11)
-Y X 0
v, 0 O
r=10 5, o
0 0 vy,

The components (p;,p;p;) are the standard com-
ponents of the Bloch vector R(r;¢,8), which, according
to Eqgs. (2.8)-(2.10), may be written in series form as

+ =
R(1;6,8)= 3 R'™(1;8)explike),

(2.12)
k=—
where R'*' has components (p{*’,p5’, p{¥") and
R¥=(R"K)* . (2.13)

We often will refer to p{" as the nth-order population

grating, even though it is a Fourier component corre-
sponding to the nth-order spatial grating.

C. Signal energy

The aim of this paper consists in studying the signal
emitted in the direction k,+nk,. In particular, it is the
pulse intensity as a function of a delay time which is the
subject of investigation. When denving the general ex-
pressions for this quantity, we do not restrict ourselves to
any particular shape of the pulse envelopes.

It is shown in Appendix A that, if the third pulse is
weak and is not correlated with the first two excitation
pulses, the PT-3 signal intensity in the direction k,+nk,
is proportional to the quantity defined by

p—_ Y2 [ [ H8-8)E-a)
" ApnVir 2y, +id_

XT3 "(1,:8,8))d6d8 , (2.14)

(n—n),. __1 pm n/3 —ilng _ .
T8, 8)=— 5 J7 - dé.e T(t;6_,6,.8,8).
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where
(T "1;8,8)) = (piM(1;8)p5"(¢;8)) (2.15)
and
2
Y(8)=exp |——
p

is a Maxwellian distribution function, t‘?‘—’tp +1,, is the
time immediately following the two-excitation pulse se-
quence, and

5_=58-5.

We refer to W. '(t,,) as the PT-3 signal intensity. It is
seen from Eq. (2.14) that the signal depends on the aver-
age product of Fourier components (2.12) of two Bloch
vectors, associated with different atoms. In Eq. (2.14)
and all subsequent equations, a tilde denotes variables of
a second atom, i.e., 8=A+ kD, .

The problem is reduced to obtaining a two-atom
signal-time correlation function for the population
difference p;. It will be shown that in a strong-field re-
gime, the gratings in the population difference fluctuate
considerably; consequently, the correlation function
(2.15) cannot be factorized. In order to solve the prob-
lem, we have to consider the second moments of the den-
sity matrix elements defined by

T =0 (;6,8)p,,(1:8,8)=p 5 -

It follows from Egs. (2.10) that components of the matrix
T, evolve as

T'nm': 2 (amk Tkm’+am'k ka )
k

+YPmOm 3t PmOms) (2.16)

The solution of this equation averaged over field fluctua-
tions gives the function

T=(Ty(t;¢,4,8,8)) ,
from which one can extract the Fourier component
- 1 3w/2 -
tn ’“t;ay =3 T tv ) ’878
rsB= s [ [ T154,6,8.8)
Xe "-4deds  (2.17)

needed in Eq. (2.14). It also will prove useful to intro-
duce the change of variables

p_=Lo—9¢) .= +d), (2.18)

and rewrite Eq. (2.17) as

(2.19)




Hereafter we take ¢ and ¢ in the simplified form
¢=kd'r, $=kd'?

instead of using the rigorous definition (2.9), as the term
wt, leads only to a shift of origin of coordinates and does
not affect the Fourier component (2.19) and, consequent-
ly, the PT-3 signal.

The signal (2.14) can be written as a sum of two terms,
one an even function of ¢,, and the other an odd function
of t;;. Using both Eq. (2.13) and the fact that T is un-
changed if a, and a, are interchanged, one can show that
T~ "=(T{y ™" ) can be written as
T2 8,8)=N(8_,8,)+isb_N,(8_,8,)  (2.20
with N, and N, be.ng real functions which are even with

8, -
Y
s VA

Wr=,vam [Ty

The first term in (2.23), which is an even function of ¢,,,
involves a single integral over &, (or, equivalently, over
velocity); consequently, this term can be interpreted as
arising independently from the different velocity groups
of atoms. The second term in (2.23) is responsible for an
asymmetry in the signal as a function of the delay time
ty,; it involves a double integral over velocities.

II1. FULLY OVERLAPPING PULSES
VERSUS TIME-DELAYED PULSES:
WHAT IS THE DIFFERENCE?

If the excitation pulses fully overlap, i.e., t;,=0, the
non-Markovian nature of the problem related to the time
delay is removed. As a result, all the standard methods
for treating fields with short correlation times can be ap-
plied. What may be less obvious, however, is that, owing
to conditions (2.7), these methods also work for nonzero
delay times. Before going into the details of such a calcu-
lation, we introduce a model which enables us to gain
some physical insight into the dynamics of two-level
atoms interacting with time-delayed pulses. We do not
take into account the relaxation processes at this point,
as they play no role in the particular phenomena dis-
cussed in this section.

For nonzero delay time we would like to represent the
position of the Bloch vector at time t,? as 2 result of some
rotation performed under the influence of two pulses
which are fully overlapping rather than spaced apart in
time as is the actual case. In other words, we replace the
two time-delayed pulses by two, modified simultaneous
ones. The new pulses produce the same effect as the two
time-delayed pulses. This representation will let us for-
mulate the effect of the time delay in a simple and sys-
tematic manner.
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2s pe | O
Ny(0,8,)+ = [ w[\/i
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respect to t,,, _=86—05, and 8, =8+8. The parameter
s is given by

1if 1,20

—1ift,<0. 2.21)

s —
If v, is much smaller than any characteristic spectral
width in the systein, Eq. (2.14) can be simplified by using
the following approximation:
L
6_

with 8( ) being the 6 function and P denoting a principal
value. Taking into account Egs. (2.22) and (2.20), we
finally obtain from Eq. (2.14)

(2y,+id_) '=78(8_)—iP (2.22)

N,(6_,5.1d6_ |db, . (2.23)

It is well known that in . absence of relaxation Egs.
(2.8) can be rewritten in a ve..or form as

X
R=[HXR], H=| Y |,
-5

where X and Y as defined in Eq. (2.9) are the real and
imaginary parts, respectively, of the Rabi frequency asso-
ciated with the electric field amplitude, taken with the
negative sign.

Let us consider the rotation of the Bloch vector R un-
der the influence of two arbitrary time delayed pulses. It
is always possible to find a time ¢, such that the Rabi fre-
quency f(t) of any pulse is negligibly small for ¢t <t,.
The exact value of ¢, does not play any role, so we put it
equal to zero.

According to Egs. (2.9) the angular velocity H equals

H=H(t)+H; (1},

(3.1

where

H;(f)zl{z(t _tlz) [

X, (1) X,(1)
H,= |Y,(0)], H,= |Y,l1) (3.2)
) 0

At time ¢ =2t,, the position of the Bloch vector
R(2ty,) results from two consecutive rotations, each of
duration t,,. During the first one, an atom is driven by
the first excitation pulse only. The Bloch vector rotates
with angular velocity

H=H(#), 0=t=¢,,
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and, at t =t,, takes the form

t
R(t,,)=R(0)+ fo”[ul(z'm(:')]d:' . (3.3)

The second rotation is performed under the influence of
both pulses (see Fig. 2) with angular velocity
H—_‘H](t)'*'Hz(t —tlZ)’ tlz St$2t12 .
The position of the Bloch vector at t =21, is then given
by
2
R(2t,5)=Rir,)+ [ {[H (1)
12
+Hy(t' =1, IRt ) }de’ .
(3.4)

We would like to represent the same transition from
the starting position R(0) to the final one R(2t,,) as a re-
sult of a different sequence of rotations. The second rota-
tion is performed under the influence of the first pulse
only:

H=H(t), for t,;=<t=<2t, (3.5)

while the first rotation is carried out with an angular ve-
locity

Hy*Ha*Heg ——

Hy —]
Hf’"z’ Heg —]

FIG. 2. Schematic representation of stochastic rotation of a
Bloch vector R for given time-delayed fluctuating excitation
pulses. Solid curve, the trajectory of the tip of this vector on the
surface of a unit sphere. Positions of the Bloch vector at time
t =0,1;,2t,,,3t,, are represented by solid arrows. Trajectory
of the tip of the Bloch vector are shown for 0 <t <21,, (dashed
curve) and 7; <t < 3¢, (dot-dashed curve) using an effective an-
gular velocity corresponding to fully overlapping pulses (see
text). Dashed arrows represent the modified intermediate posi-
tions R'(¢,;) and R'(2¢,,) of the Bloch vector. Note that at the
end of each step of the transformation the position of the actual
and modified Bloch vectors coincides, even though they differ
throughout the intervals. The wide arrows labeled by various
values of H give the angular velocity in each interval.
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H=H,(t)}+Hy(t)—H¢t), for0=t=¢,, (3.6)

where an additional angular velocity component is intro-
duced to achieve the same final position of the Bloch vec-
tor (see Fig. 2). In terms of the new angular velocities,
the modified intermediate position R'(z;) of the Bloch
vector is given by

n , ,
R'(2;;,)=R(0)+ fo {[H, (") +H¢")

—H,4(¢'}]R{(t")}dt’ (3.7
and may not coincide with the true value R(¢;;). Using
Eq. (3.5}, one finds that the final position of the Bloch
vector at t =2¢,, is given by

u,,
11(2:‘2)=R’(t‘1)+flIz [H,(¢" )R ) ]dt’ . (3.8)
Since the delay time satisfies condition (2.7) the Bloch
vector rotates only slightly in a time period ¢, and Egs.
(3.3), (3.4}, (3.7), and (3.8) can be solved by iteration. Car-
rying out the iterations to second order gives us two ex-
pressions for R(2¢t,,) in terms of R(0). These expressions
are identical provided that

l+llz
H,d(t)=f' (H (t ) H,(1)]dr’ . (3.9)

From the geometrical point of view, the appearance of
H,,70 is simply a consequence of the fact that two suc-
cessive rotations with different angular velocity vectors
H, and H, do not coincide with that of a single rotation
with H=H,+H,.

We can carry out a similar transformation for the next
time period t,, <t <3t,, and so forth (see Fig. 2). At
each step we obtain the same result (3.9) for the time in-
tervals nt, <¢t=(n+1)t;;, n=12.... When this
transformation is completed up to the time ¢ =t‘? we get
the correct position of the Bloch vector, R(z)), although
all the intermediate values R’(nt,,) differ from their true
values. The vector R{ t‘?) can be regarded now as a result
of the rotation performed under the influence of the two
fully overlapping modified pulses along with some
modified atom-field detuning. The modification of the
field components and the detuning is given by Eq. (3.9).

If the laser field is fluctuating, the vector H,, is also a
fluctuating function of time. It turns out that the fluc-
tuating part of H,4(¢) results in contributions which are
negligible in the limits discussed in this paper. Conse-
quently, the signal depends only on (H,,). Taking into
account definitions (2.9) one finds that the only nonzero
component of the averaged vector (H,y) lies along the 3
axis and thus describes some additional detuning. This
component k4 3, is given by

Baas={(H,);=G(1,))a,siné , (3.10)
where
2
G(t,2)=fo g(r)dr, Glte)==%1. 3.11)

The additional detuning h,4 ; is nonzero only for time-
delayed pulses (7,,70), if both @,,70 (the puises are
correlated) and ¢=k,-r#0. It depends strongly on the
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position r of the atom and on the delay time 7, through
the functions ¢ and G(t},), respectively. Owing to its
dependence on G (t,,), the absolute value of this addi-
tional detuning rises from O to a,lsing| as |t,,| varies
from O to |t,,]>7!%. Hence, if this additional detuning
significantly modifies the dynamics of the two-level atom,
we can also expect the PT-3 signal to depend on ¢, even
if T\;~7!%. The implications of this model are explored
below.

IV. AVYERAGED EQUATIONS
FOR THE CORRELATION FUNCTIONS

The single-time two-atom correlation functions
(T,, (1)) are the solutions of Egs. (2.16) averaged over
histories of the laser fields. A solution for (T, ) for the
general case of arbitrary t,, will be discussed elsewhere.

In this paper we obtain exact results for delay times ¢,,
satisfying Eq. (2.7), i.e., sufficiently small that the Bloch
vector R, as well as the tensor T,,,, varies only slightly
during this time period. Nevertheless, it will be shown
that the signal (2.14) can vary significantly as a function
of t,, even under this restriction.

Owing to condition (2.7) we can use the decorrelation
approximation*? when deriving equations for (T, ). We
follow the method described in Refs. 15 and applied there
to this particular problem, extending the method to in-
clude effects of relaxation and atomic motion. We obtain
the following differential equations for (7}, ) and {p,)
that hold true for pulses of arbitrary shape:

(p))=(p)=0,

p="laldlp+y,p;.—p), 4.1
T=—2x+y)T+Q($,$)Z +Q%¢,8)2*
+vipilp+p) 4.2)
Z=~—(x+2y,+i8,)Z +4Q'T, (4.3)
where
p={py(8,8)), p={p;(8,8)),
T =(p;(8,0)p:(8,8)) =(pyp;) =(Ty) , ws
Z={(p,+ip,)(p,—ip,))
=T, +Tp+i(T,,—T,)),
and
alé)= Ha,+a,+2a,,cos¢) , (4.5)
x =ald)+ald)=a,+a,+a(cosd¢+cosd) ,
Q=1la,+ae’" P+a,let+e )], (4.6)
8,=[8+G (t,;)asind]—[8+G(t,;)a,,sind)
=8_+G(t,)a ,(sing—sind) . 4.7)

The function G (¢,,) is given by Egs. (3.11).
Equations (4.1)-(4.3) describe the first- and second-
order density-matrix correlation functions of two atoms
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located at points r and T, respectively. We present only
three of the nine equations for T}, because, under the ap-
proximation applied here, the rest of the equations are
decoupled from Egs. (4.2) and (4.3) and do not play any
role in this problem. We shall discuss solutions of Egs.
(4.1)-(4.3) in Sec. V. Before doing so, let us consider the
coefficients appearing in these equations. The parameter
2a(¢) which appears in Eq. (4.1) is proportional to the
mean intensity of interference fringes at the location of
the atom. This parameter is responsible for the decay of
p={p3) ={p,a—psy ); in other words, (2a) ' is a relaxa-
tion parameter whose origin can be traced to the com-
bined action of the fluctuating excitation pulses. In Eqgs.
(4.2) and_(4.3) the parameter x, equal to the sum
al¢)+ald) (d=k,-1,6=k, T), leads to the decay of the
averaged, single-time, two-atom correlation function T.
Another parameter, Q, proportional to the correlation
between interference fringes at different points r and 7,
provides coupling between the population correlation
function T and the coherence correlation function Z. As
al(¢), x, and Q depend on the cross-correlation parameter
ay;, we expect the solution of Egs. (4.1)-(4.3) to differ
substantially for correlated (a),#0) and uncorrelated
(@;;=0) pulses. Finally, we note that quantity 5, defined
as a difference of modified detunings in Eq. (4.7), appears
in Eq. (4.3). In Eq. (4.7), one sees that the atom-field de-
tuning  is altered by a term G(1;,)a,;sind [see Eq.
(3.10)}, whose origin was explained in the previous sec-
tion and which is the only parameter in Egs. (4.1)-(4.3)
that depends on the delay time ¢ ,.

V. RECTANGULAR PULSES

In this paper we consider pulses with rectangular en-
velopes

f(ty=const#0 for 0=<¢ <t ,

for which the coefficients (4.5) in Eqgs. (4.1)~(4.3) do not
vary with time. Although the assumption of rectangular
pulses may seen to be a severe restriction, it turns out
that many of the results obtained are independent of
pulse shape.

The ensemble of two-level atoms is assumed to be in
thermal equilibrium before the excitation pulses are ap-
plied at t=0. The corresponding initial conditions are

pJ(O)zpaa(O)_pbb(O):pk ’
p1(0)=2Re[p,, (0 ""1=0, (5.1)

p2(0)=2Im[p,, (0 "*}=0,
implying that

pl0)=p,,, (T(0))=pi, Z(0)=0. (5.2)
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From Eq. (4.1) we find an averaged population difference

P3e ~[atg)r+y, ¢

P 2a(¢)+y,(71 2ae ) (5.3)

The solution for the averaged second moment of the pop-

¥iple(x +y M(x +2y, )2 +8}]
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ulation difference can be represented in a general form as

3 _
T=To+ 3 e"'T,+e "(Te 2+Tee %), (54)

i=1

where T is the steady-state solution

T,

The exponents A, , ; are the roots of the equation

o (A+27)A+2y, +x)A+2y,4+3x)= =2y (A+2y, +x) =84 (A +2y, + 2x) =2y, — 7 N A +2y,+x)?

with
y=x2-4|Q?

=2a,a,[1—cos(¢—@)]=al,(sing—sing)? .  (5.7)

The functions T; (i=1,2,3) are solutions of the homo-
geneous equations (4.2) and (4.3) (p;, =0); they corre-
spond to the roots A; and take into account the initial
conditions (5.2). The exact expressions for T, , ; are too
complicated to be presented here. Limiting values for
T,,T,,T, are given in Sec. VI and Appendix C.

Finally, T (a,&)=T,(&,a) is given by

3 2y ,plea(z?+8%)
Qa+y[(z2+8})2a+y)—8l01%2]

T, (5.8)

where z =& —a—y,; +2y,.

In principle, a numerical integration (2.19) of the gen-
eral solution (5.4) over ¢ and ¢ gives us the desired PT-3
signal. However, to understand the dependence of this
signal on the numerous parameters involved, it is useful
to obtain some analytical results. They can be obtained
for large or small values of a parameter n, which charac-
terizes the number of population gratings of comparable
amplitude which are generated in the sample, each grat-
ing of order n contributing to the signal in direction
k,tnk,. For ny<<1, only the gratings of the first order,
n =121, are important. For ny>>1, it is possible to in-
tegrate (2.19) by noting that regions where cos$~cosd
give maximum contributions to the PT-3 signal.

Hereafter, we replace t,?=tp+t,2 by t,, since under
conditions (2.7) the difference between them does not
affect the results. We assume that at thermal equilibrium
a two-level atom is in its ground state and thus

pr=1. (5.9)

Deviation from condition (5.9} leads only to decrease or
the PT-3 signal by the factor p3,. In addition, we drop
the (¢,4,5,5) arguments and write T'(t;¢,8,8,8) simply
as T(1).

B a+y)2a+y){[(x +27, 2 +83]x +7,)—41Q1%x +27,)}

(5.5)

{5.6)

f

V1. QUANTITATIVE RESULTS IN THE
WEAK-RELAXATION LIMIT y, T, << ;7 T, <<1

In this section we assume that

Yov <<ty ! (6.1)

and consequently, the role of relaxation in the formation
of the PT-3 signal is negligible, and the signai can be cal-
culated using Eq. (2.23). Most experiments have been
carried out in this “weak-relaxation’ limit.

A, Weak-field regime
The weak-field regime is defined by

a,a;<<t, ', (6.2)

In this limit, the population gratings of order n =+ 1 lead
to the strongest PT-3 signals. The signals, originating
from the n=1 and n = —1 gratings, are of equal intensi-
ty. In the weak-field regime, one can interpret the signals
in terms of a four-wave mixing process involving one in-
teraction with each of the three excitation pulses. If ine-
qualities (6.1) and (6.2) hold, one finds (see Appendix B)

I—cos(d_2,)
82

T V(,:8,8)=ak} +2a,a, 6.3)
As T~V given by (6.3) is a real even function of & _, it
follows that N,=0 in Eq. (2.20). Hence, to obtain the
PT-3 signal from Eq. (2.23), one needs only the expres-

sion (6.3) with equal detunings, that s
T~ 1(1,;8,8)=N,(5_=0), given by
T“'_”(tp;5,5)=t:(a¥z+a|a2) ] {6.4)

To interpret (6.4), one can use Egs. (2.15) and (2.13) to
rewrite T ~1)(1,;5,8) as

T M1,;8,8)=(1p{"'(1,;8)1)
=[N ) P+ (piMe,;8)~p! e, )12)
(6.5)

where p!)(1,) is the mean amplitude of the population




41 OPTICAL COHERENT TRANSIENTS INDUCED BY TIME-. ..

t

difference grating, p''Xt,)={(p}{'’1,;8)). From Egs.
{2.12) and (5.3), and under condmon (6.2), one finds that
Pt 1,) is given by

P“)(tp)=a|2‘p (6.6)

The correlation function {6.4) consists of the two parts.
The first term a,zt depends on the mutual correlation of
the pulses and is equal to the first term in Eq. (6.5), that
is, to the square of the mean amplitude p' (t ) of the
population difference grating. The second term of ex-
pression (6.4) equals the average of the square of the fluc-
tuating part of the population difference grating and is in-
dependent of the mutual correlation of the pulses. For
fully correlated pulses these two contributions are equal.
From Egs. (2.23) and (6.5) one obtains the PT-3 signal

W =tHal, taia;) (6.7)

which does not depend on the delay time ¢,,. One might
have anticipated this result since, in a weak-field regime,
the significant asymmetry of the signal occurs only for
long delay times |t,;| > Ap!,>® for which the Bloch vec-
tor can acquire a non-negligible Doppler phase (of order
Apty; >1). For ty, satisfying inequality (2.7), however,
this asymmetry is negligible. For fully correlated pulses
(d>=,;), Eq. (6.7) coincides with a previously obtained re-
sult.

The important feature of the weak-field result is the ab-
sence of a direct dependence of the signals on the correla-
tion time. This dependence emerges only in third order
of the parameter at, and can be neglected.

One can also see from Eq. (6.7) and the definition of a;,
that the part of the signal proportional to a2,, which de-
pends on the correlation of the pulses, cannot be larger
than the part proportional to a,a,, which is independent
of this correlation. In a strong field, these properties of
the signals are changed dramatically.

B. Strong-field regime

The main objective of this work is to study the regime
when at least one of the excitation pulses is strong. In
the weak-relaxation limit (6.1), the strong-field criterion is

A, =max(a;,a,) >, (6.8)

The PT-3 s1§nal is determined from Eq. (2.17) [which
gives T'™ "(t,) in terms of the averaged correlation
function T(1, )] Eq. (2.20) [which represents T'"~"(z,)
in terms of N , and N, ], and Eq. (2.23) (which gives the
PT-3 signal as an integral of N over 8, and N, over 8. ).
It is shown in Appendix C that T(¢,) is approximately
given by
T(,)=1e"" 6.9)

where
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A’l——- —%[2a1a2[1—008(¢_¢)]
~[1—Gt,;))a,(sing —sind)?+ 6
+28_G(t);)a,,(sing—sind)}

X[a,+a,+a,,lcosp+cosg)] ™t . (6.10)

All the other terms in the general expression (5.4) provide
corrections to the PT-3 signal which are at most of order
(Amantp) ™' << 1.

An important feature of the strong-field signal is tied to
the two terms in Eq. (6.10) that contain the function
G(t,,). For correlated pulses (a,7#0; i.e.,, ®#0), these
terms lead to the variation of the signal on a time scale of

712, since G (¢,,) has been shown to vary over such a time
scale As noted above, Eq. (2.23) is a valid starting point
for an analysis of the PT-3 signal in the weak-relaxation
limit. The part of the signal which is asymmetrical about
1,, =0 arises from the N, term in Eq. (2.23). Both of the
terms in Eq. (6.10) depending on G (¢,,) affect this part of
the PT-3 signal. It can be shown, however (see Appendix
D), that in a strong-field regime the strongest PT-3 sig-
nals are characterized by small orders n and are almost
symmetrical for |t,;| <a”!. Although the asymmetrical
contribution to the signal is usually small, there are cer-
tain cases (to be discussed) where it cannot be neglected.
If we do not consider this small asymmetry, then accord-
ing to Eq. (2.23) the PT-3 signal is determined by its
symmetrical part, N,, that depends only on A, (6_=0)
from Eq. (6.10). Consequently, N, is affected only by the
term in Eq. (6.15) which is proportlonal to the parameter
[1—G¥t,,)]a3, that varies from a?, to O as t,, varies
from O to values > 72, Thus, for ¢, > 7}2 this factor van-
ishes. Consequently, the numerator of Eq. (6.10) becomes
independent of ® once t,, > 7.2, There is an additional
dependence on a,, contained in the denominator of Eq.
(6.10); however, it turns out this dependence does not
significantly modify the signa! for small order n. As a re-
sult, the signal is nearly independent of @ for ¢,, > 7% in
other words, both correlated or uncorrelated pulses,
characterized by ®=1 and ®=0, respectively, give rise
to almost equal signals for 7,, > )2,

The detailed calculations of the PT-3 signal are carried
out in Appendix D. Below we present the results in the
most important cases.

1. One strong and one weak pulse

As a, and a, enter Eq. (6.10) in a symmetric way, the
PT-3 signal does not depend on which pulse is strong,
and this case is characterized by

>t Issa 6.11)

A max min *
where a;,=min(a,,a,). Taking into account Eqgs. (6.11)
and expanding expression (6.10) to first order in @,

. p,
we get the correlation function




6202 V. FINKELSTEIN AND P. R. BERMAN ‘4
282t 200t
T(t)=3exp |~ E 111+ —"% | [cos(¢—d)—1]{2—(1—=GV)®[ 1 +cos(¢+&)]}
QA nax 3
26®5_ a; - l . .
- 1— (cosg+cosd) |(sing —sing) | | . (6.12)
a; max j

The strongest signals (n70) are emitted in the directions
kitky. Picking up the terms proportional to
exp{i(¢—¢)} needed in Eq. (2.19) one finds

T“’_”([ )= amintp _ 282_tp
? 9 3amax
20GS_
X 12-[1-G¥t )10 —i .
(6.13)

The signal obtained from Egs. (2.20) and (2.23) is given by

o !
W<,3’=% 2—[1-G4t )P

az —172
max
+2a,,¢ .
2A%, 3¥"max"p

_ 296
vV

(6.14)

Thus, when one of the fields is weak, the PT-3 transient
consists of a background signal and a narrow dip of
width 7!2 and relative depth ® /2 centered at zero delay
time, ¢;,=0 (see Fig. 3). The dip is produced only for
correlated pulses ($70) while the background signal ex-
ists for either noncorrelated or correlated pulses. The re-
sult (6.14) coincides with that obtained earlier'® for fully
correlated pulses, when ®=al(a,a;)”'=1, and for
Apaxtp = . Owing to condition (6.11), the signal (6.14) is

e

L
1+2
" Wor 4

2
[1-G¥1 )] [1—5’77

where
12
da,ayt,

3(a|+a2)

_ 2(alaz)l/2

a, +a2

b4

n=

(6.20)
and

_aytay)
4abt,

Bl
4

almost symmetrical around t,, =0 for any Doppler width
Ap; however, there is a small negative asymmetry which
arises from the last term in Eq. (6.14) [the signal at ¢,, <0
is larger than at ¢;; >0]. Such an asymmetry cannot ap-
pear in a weak-field regime.

2. Both pulses are strong
This case is described by the condition
Cpmin=min(a,;,a;)>>1,7" . (6.15)

Population gratings of order n <n,, with nyg>>1, are
created by these strong fields; consequently, the signal in-
tensity in many directions, k,+nk,; with n <n,, can be
comparable. We need consider only n =0, since the sig-
nals in the k;—nk, directions are related to those at
k3+nkd by

W3 =W (—1,) . (6.16)
It is possible to obtain analytical expressions for the

signal in some important limiting cases provided

n<<a_ t 6.17)

p -

If mutual correlation of the pulses is moderate or weak,
that is, if

$<0.5, {6.18)
the PT-3 signal takes the form (see Appendix D)
42t _nt 2Gnp 2+D _n?
77 nV2m(D+1) | 1+D o7 ’
(6.19)

and all the terms in parentheses that are proportional to
® are assumed to be small compared to 1. Note that
D << 1 corresponds to a relatively large Doppler width,
and D >>1 to a relatively small Doppler width.

In the limit that ®=0 (noncorrelated pulses) the signal
(6.19) reduces to

W(3)(¢=o)=£:'_l_/_2i i
" IV 2r

The signal (6.21) does not depend on ¢,, and Eq. (6.21) is
valid for all n <<7? [see Eqgs. (6.17) and (6.20)].

(6.21
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PT-3 SIGNAL (arbitrary units)

1
2

-4 -2 [¢]
tia/ TR

FIG. 3. Signals corresponding to order n=1 vs t,,/7.% in a
weak-relaxation limit (y,2,=0.02 and y,1,=0.01 in this figure
and Figs. 4-10) in the case of one strong and one weak pulse
Araxtp = 300, Apint, =0.05, for different degrees of mutual corre-
Iation & of the pulses; Apz, =14. All curves in this and all oth-
er figures represent numerical solutions of Eqgs. (4.1)-(4.3).

The signal (6.19) for correlated pulses differs only
slightly from that for uncorrelated pulses, but the
difference between the two is a function of ¢,,. The PT-3
signal (6.19) in a direction characterized by n << exhib-
its a small peak having width 7.2 and relative height

W= — Wity >>7,)

o ¢ <1
W, (t), >>7,)

(6.22)

1
3

(see Fig. 4). The signal has positive asymmetry which is
small for any Doppler width and ratio of the pulse inten-
sities. Owing to this asymmetry the central peak max-
imum of the signal is slightly shifted to positive delay
time, that is

24D oo 629

tmax = ﬁ
12
7

-
-

PT-3 SIGNAL (arbitrary units)

i I

0
tia/ T

-4 -2

FIG. 4. Signals corresponding to small order n =1<<7 vs
t12/7} in a weak-relaxation limit in the case when both pulses
are strong: Op,,!, = 10°, Apnintp, = 10’ for different degrees of mu-
tual correlation @ of the pulses; Apt, =14,

6203

It is also seen in Eq. (6.19) that the background signal for
;> 7. does not exactly equal that for noncorrelated
pulses. This difference reaches its maximum value
—®/16<<1 when the pulses have equal intensities,
a,=a,, and the background signal decreases with in-
creasing ¢.

In contrast to the signals corresponding to small n, the
signal in a direction characterized by n >>7 exhibits a
dip (see curve a in Fig. 5), if

"B . (6.24)

nv'1+D
Condition (6.24) can be satisfied if the Doppler distribu-
tion is narrow, D >>1, or the pulses have very different
intensities, B<<1 [or a,,,/0a.,>10, see expression
(6.20)]. The signal has a small negative asymmetry; the
dip is positioned at ¢, =0 and has relative depth

. W’(IS)(t|2 >>TC )_ W’(,Bl(tlzzo)
Wit >>1,)

2
S| =4l<l>—n—2— «<1.

(6.25)

However, as soon as condition (6.24} is violated, the
dip vanishes and the signal continuously decreases as ¢,
varies from negative to positive values (see curve ¢ in Fig.
5).

If the pulses are strongly correlated, that is if

(1-P)<<1,

the qualitative behavior of the PT-3 signal is similar to
that considered above; however, all the features are more
clearly defined as we proceed to discuss.

First, we consider the strongest signal, characterized
by small n, n << 7. The intensity of the signal is given by

Wt )=Ws+ W, 6.27)

(6.26)

where Wy and W g are correspondingly the symmetrical
and asymmetrical parts of the signal

|

PT-3 SIGNAL (arbitrary units)

o

i
>
|
N

0
tie/ "'eﬂ

FIG. 5. Signals corresponding to high order n =20>7 vs
1y, /7% in a weak-relaxation limit in the case when both pulses
are strong: amnt, =100 and a,,f, =10* (curve a), 10’ (curve b),
and 110 (curve c}. Degree of mutual correlation of the pulses is
moderate: ®=0.25; A,1,=14.
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Ws(tlz )= Ws( -112 ); WAS('IZ )= WAS( _tlZ) . (6.28)
For n << 7, Ws is much larger than W,q, and for
t;; <7!% it can be represented in the form (see Appendix

D)

1 -
Ws= W,+W_++— (6.29)
ST 3amV2r + 47
with
4
W= L‘“ = 172y
N+ nlexpl—Z,/2)+[Z, +exp(—2Z )13}
(6.30)
and
4a,a,t, 12 1
M= a,+ayt2a),) ’
(6.31)
[1-®(1—-GH]nd
+= 2
n
If the gulses are strongly correlated, that is, if
(1—®)<n?/q%, and if the delay time is very small,
n? 172 »
1y <1l |5 —--®) , (6.32)
ES

then Z, <«<1 in Eq. (6.30), and W, increases with in-
creasing t,, as
1
W,=—
oy

However, when

29, . [1—D+ (1, /7123

1
" n 2n?

‘ . 16.33)

n2 172
2>t |5 -(1-d) |, (6.34)
N+
then Z; > 1, and W is given by
W= ! 16 , (6.35)

In
29y [1—®+(t, /71

and decreases with increasing t;,. Consequently, W
reaches its maximum for
n? 172
1T = ]2 ——(1—q>) . (6.36)
7%
If the pulses have very different intensities

(@pax >> Ay OF B<< 1), the asymmetrical part of the sig-
nal W,s can be neglected, since W 5 <<B/n<<n~! (see
Appendix D). Thus the signal is completely determined
by its symmetrical part W. The condition 8 <<1 holds
when 7, =n_=%; in this limit W, =W _, and the sig-
nal, obtained from Eqgs. (6.29)-(6.35), exhibit a peak cen-
tered at ¢, =0. The peak has temporal width |¢,|=~r!2
and, moreover, for fully correlated pulses (®=1) there is
an additional very narrow dip that appears in the mlddle
of this central pcak This dip has width [¢,,|=(n /9712,

depth ~0.0277', and is very sensitive to the degree of
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mutual correlation of the pulses, since the dip vanishes as
soon as (1—®)>n?/xn% as shown in Fig. 4. For fully
correlated pulses, the peak is approximately
27 'In(2n/n) times higher than the background signal
[see Eq. (D1N)]:

1
Vo’

which is reached for |¢,,]/ > 7> and which would be ob-
tained for noncorrelated pulses [® =0, see Eq. (6.21) for
n <<q).

In Fig. 6 the signal for order n=1 is shown as a func-
tion of intensity of the weaker pulse. The transition from
a dip of width 7.* [@pt, <<1; Eq. (6.14)} to the peak
(1 < apipt, <<@p,gt, ) occurs for Amiap = 1. The absolute
intensity of the background signal varies with a2, as

w3k, > = 6.37)

4a .t

min‘p

3

4a

min p

(3) — —
Wi'=1exp 3

, , (6.38)

where I, is a modified Bessel function, and reaches its
maximum 0.07 for a,;;,1, = 1.
If the pulses have nearly equal intensities, such that

1-B=[(a)' "~ (a))'*P/la, +a,) <1 ,

one can see from Eq. (6.30) that W >>W_ and thus
Ws~W . The asymmetrical part W,g of the signal is
still small. However, it cannot be neglected if the pulses
are fully correlated [(1—®)<n?/n*<<1] and the
Doppler width of the atomic ensemble is large (D << 1).

In this case W g is given by

2nG G . -
=" __[_p , if |G <<n™!,
AST 3n2(an?—1) 3 |Gl <<n
(6.39)
WAS=——G——~, if 7'<«< |Gl <<ny™!, (6.40)
6mnvV'nm
&
w
b4
15
(1
Fr

\\‘

\\\\\\\\\\\\\\\\

-

PT-3 SIGNAL(normalized)

2

FIG. 6. Signal of order n=1 as a function of t,,/7* and
Qumint, in @ weak-relaxation limit in the case when one of the fui-
ly correlated (P =1) pulses is strong ap,,t, =500, while the in-
tensity of another varies, 0.05 < ap,t, <170; Apt, =7.
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W= 1 bot 2n In 2|G|
A" 3mGVr [0 gV yot(p2+2G2D)2 |
if np ' <<|Gl, (6.41)
where
n DGp?
Yo= 7 €xP —-7’1—

One can see from Eqs. (6.39)-{6.41) that W5 is much
smaller than Ws. However, when [t),| <(n/n)tl, Wy
is comparable with the part of W which depends on de-
lay time [see Eq. (6.33)]. As a result, the narrow dip in
the middle of the peak practically vanishes (see Fig. 7)
and the maximum of the signal shifts to

n i

max _ *
tyy, =T, .

For |t,,|>7!? the signal reaches its background value
given by

_

" In {min
Vv

nv2

1
Wlt,,l > =——=12v2+
n I 12l Te 31”7‘ /—211_ 5

where s is defined by Eq. (2.21). Comparing Egs. (6.37)
and (6.42), one can see that even in the case of equal in-
tensities of the fully correlated pulses the background sig-
nal differs only slightly from that corresponding to non-
correlated pulses.

In Fig. 8 for a,/a,=const=1 the evolution of the sig-
nal with increasing intensity of both pulses is shown. The
transition from the signal with no dependence on ¢,

Witz =4%%)

w(te2)

PT-3 SIGNAL(normalized)

FIG. 8. Signal of order n=1 as a function of ¢, /7}* and a,t,
in a weak-relaxation limit; Apt,=7. The fully correlated
(®=1) pulses have nearly equal intensities a,/a;=1.2 that vary
from small to large values (0.1 < a,t, <500).

Je
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PT-3 SIGNAL (arbitrary units)

]
tia/ T

FIG. 7. Signals corresponding to order n=1vs t,,/7!* in a
weak-relaxation limit in the case of fully correlated (®=1)
strong pulses with almost equal intensities (a;z, =120,
a,t, = 100) for different Doppler widths of the atomic ensemble:
curve a, —Apt,=1.4 (D=118); curve b, —Apt, =14 (D=1.2);
curve ¢, —Apt, =70 (D=0.05).

2

2
D ) (6.42)

[weak-field regime, a,,t, <<1; Eq. (6.7)] to the signal
with a well-defined peak (strong-field regime, 1 <<a, ,t,)
occurs in the intermediate range of intensities; that is,
when a, ,t,~1. For these intensities the asymmetry of
the signal and its absolute intensity reach their maximum
values.

The above discussion is valid for orders n satisfying
0<n'<<1. The signal of order n=0 is difficult to detect,
as it is emitted simultaneously with the third pulise in the
same direction, but it is the strongest of the PT-3 signals.
It is given completely by its symmetrical part, and at zero
delay time can be expressed as

1
V2

WP, =0=W(t,,=0)+ (6.43)

For t,, > 713 [n2/27% —(1—®)]'/%, the difference between
PT-3 signals of zero and first order vanishes, and
WP (t,,) coincides with the symmetrical part of the sig-
nal W{(t,,) given by Eq. (6.35). The zero-order signal
always decreases with increasing |1,,].

Let us now consider the PT-3 signals of higher order,
that is, with n >>7. These signals are relatively weak;
nevertheless, they have some features that deserve discus-
sion. For the sake of simplicity we consider fully corre-
lated pulses (®=1) in two limiting cases: (1) the pulses
have very different intensities @ p,, >>a,, and (2) the
pulses have equal intensities a; = a,=a.

In the first case (@, >> @), if
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n'a,;
— <1, (6.44)
7 Cmax
the signal is given by
] n}3-G?
W(3) = —
(L) 31;\/2_11€xP po ]
212
XI, ELTG——’l : (6.45)
47

where I, is a modified Bessel function. As shown in Fig.
9, the signal (6.45) exhibits a profound dip of relative
depth |S|=(1—27n/mn)= 1 centered at t,,=0; for
[t)] > 7 the signal practically coincides with that for
noncorrelated pulses.

When

4
R Qoin
4
7 Qpax

the background signal acquires a negative asymmetry if
D7?/n? <1 [see Eq. (D36)].

In the second case (equal pulse intensities) the signal is
given approximately by

>1, (6.46)

w=—1__ |G| -G erf 4
s vl Ll provrv Ty
— 2
+ Y2exp(on?/an’) 1) e nlGLY |6
3mn 47

where erf is the error function. **

If the Doppler width of the atomic ensemble is
sufficiently small, such that
2

<1, (6.48)

n2

Dn2

then, as in the first limit (a,,, > ag;,), the PT-3 signal

nAp

a

PT-3 SIGNAL (arbitrary units)

0
t/T

FIG. 9. Signals corresponding to different orders n vs ¢, /7!
in a weak-relaxation limit. Both pulses are strong and have very
different  intensities  Gpal, =10%,  agt, =100 (B=0.2);
Apt’ = 14, =1,
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for equal intensities exhibits a dip whose minimum is
shifted to positive ¢;;. The dip has relative depth close to
unity, since the background signal

WOt > p2y=—T
w (> 7e) IninVnm

is much larger than the value at zero delay time.

If the Doppler width is sufficiently large, such that
condition (6.48) is violated, the signal (6.47) becomes
strongly negatively asymmetric and the dip vanishes (see
Fig. 10).

The remarkable feature of Eq. (6.49) is the power-law-
type dependence of the signal on n for t,, > 72, rather
than the Gaussian-like dependence seen in Eq. (6.45) for
pulses having different intensities. As a result, it may be
easier to detect signals corresponding to large n if equal
pulse intensities are used. By comparing Eqgs. (6.49) and
(6.21), one sees that the background signal for equal in-
tensity, fully correlated pulses differs from that for non-
correlated pulses. This is the only limit where such a
marked deviation occurs; the origin of this effect can be
traced to the increasing importance of the a,, term in the
denominator of Eq. (6.10), a term that was ignored in the
qualitative discussion following that equation.

When both fields are strong, the PT-3 signal differs in
almost every respect from the analogous signal in the
weak-field regime. The strong-field PT-3 signals are emit-
ted with comparable intensities in many directions (corre-
sponding n <ny $7), while the weak-field signals only in
the ky+k, directions. The signal for correlated pulses
can be much stronger than that for noncorrelated in the
strong-field regime but not in the weak-field regime.
Only the strong-field result depends directly on the
cross-correlation time 7.2 exnibiting a well-defined nar-
row peak (n <<7), dip (n >>), or combination of them
(n~m) at t;,=0. A negative asymmetry of the signal
also occurs only in a strong-field regime.

Finally, it is possible to show that, in sharp contrast to
the weak-field regime, for strong fields the signal induced

(6.49)

—

[=]
(4]

PT-3 SIGNAL (arbitrary units)

N
>

0
tie/ "’:’

FIG. 10. Signals corresponding to different orders n vs
t;2/7}2 in a weak-relaxation limit. Both pulses are strong and
have nearly equal intensities @pa.f, =120, @uf, =100
(B=0.996). All other parameters and notations are the same as
in Fig. 9.
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by the correlated pulses originates from the stochastic
part of the population grating [p}"( t,)—( Py t,N],
while the contribution from the constant part of the grat-
ing, (p'"(1,)), is negligible. In the weak-field regime, the
constant and stochastic parts of the population grating
induced by the fully correlated pulses provide signals of
the same intensity [see Egs. (6.6) and (6.7)]. To under-
stund the strong-field results one can consider the mean
amplitude p'™' = (p{" t, )) for the grating of the order n.

Since the spontaneous relaxation is assumed to be
negligible (y, << tp"‘) we obtain from Eq. (5.3)

—laytaykt

pr=(—1)e ’LQ2apt,) , (6.50)

where I, is a modified Bessel function. In contrast
to the two-atom correlation function T'™~"
=(p'3"’(tp)ﬁ‘3’”(tp)), the single-atom amplitude (6.50)
does not depend on either delay time ¢,, or the detuning

8.

As long as condition

(ayta,—2ap)t,=almt, >>1 (6.51)

is satisfied [a(¢) is defined in Eq. (4.5)], the mean grating
amplitude p'*(1,) given by (6.50) is exponentially small
for any n, namely

—la)+a,~2a,)

p'"1,) <<e P <<l .

However, if the pulses are almost fully correlated (¢ = 1)
with nearly equal intensities (a;=a,=a,), inequality
(6.51) can be violated to the point that

(a;+a,—2a,), =1 . (6.52)
For max{n, 1} <<a,,t, it follows from Eq. (6.50) that
{(—1)"exp( —n2/4a,2t,,)

)172

in) -
P, (4ma

12%p
—(a‘+az—2¢zlznp

Xe , (6.53)
and, owing to condition (6.52), the gratings characterized
by n <(2atp)” ? have nonexponentially small mean am-
piitudes ~(at,) ™',

It is not too difficult to understand the physical origin
of Eq. (6.51). The atoms in the sample see interference
fringes produced by the excitation pulses. Atoms at
points other than interference minima are saturated by
the fields. If the pulse amplitudes are unequal, the inten-
sity at the minima of the interference fringes is still
sufficiently high (in the strong-field regime) to saturate
even these atoms. These saturated atoms produce ex-
pouentially small contributions to the mean grating am-
plitude. On the other hand, for equal pulse amplitudes,
atoms near the interference minima see an arbitrarily
small effective total field; these atoms are not saturated.
As a result, the mean amplitude p(t,;4) of the spatial
population grating has narrow groves in the vicinity of
the minima ¢=(2m +1)w (m =0,x1...) of the interfer-
ence fringes.

If the nth-order population grating pi™(1,;8) is written
as the sum of the constant and stochastic contributions,
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Py (2,:8)=p'"(1,) +[pi"(1,)—p'"(1,)] (6.54)

the correlation function T'™~"'=(p{"(1,;8)py""(1,;8))

is given by
T(n,—n)(tp )=[p(n)(tp )]2
+{[p§"(1,;8)—p""(1,)]

X[py "(1,;;8)—pMe,)]) . (6.55)

We did not take into account the first term in Eq. (6.55)
when deriving the results in the strong-field regime, ow-
ing to the fact that this contribution is (a) exponentially
small if condition {6.52) is violated and (b} still small rela-
tive to the second term of Eq. (6.55) [compare Egs. (6.53)
and (6.49)] even if condiiion (6.52) is satisfied. In other
words, for all @,a,,a,,, the signal in the strong-field re-
gime is produced by the stochastic part of the populating
grating, i.e.,

WI=T" " 8,6)
= (1py"(1,;8)—p' " (1,)1?) >>[p'™(1,)]* . (6.56)

VII. QUALITATIVE EXPLANATION
OF THE STRONG-FIELD RESULTS

To give a qualitative explanation of the strong-field re-
sults obtained in Sec. VI, we recall that the PT-3 signal
depends directly on the correlation function
T(1,)=4py(1,;6,8)p;(1,;8,8)) of population differences
of two atoms. In general, these atoms are characterized
by different positions (¢# @) and velocities (§#8). More
precisely, according to Egs. (2.19), (2.20), and (2.23), the
part of the signal symmetrical relative to ¢, and n de-
pends only on the correlation {p;(1,;8,8)p:(1,;6,8)) of
atoms having the same velocity. The asymmetrical part
of the signal can arise when

(ps(t,;6,8)p3(1,;8,8))#(py(1,;8,8)p3(1,:6,8)) .

To explain the obtained results, we first consider the
behavior of the correlation function T'(t,) as a function
of ¢,6,8,8 and t,,. Since in a strong-field regime the
population difference p;(1,;4,8) is a stochastic quantity
with (p;(tp;d;,&))zo, only those atoms that satisfy the
condition p;( tp;¢,8)zp3(tp;$,5) contribute to the signal.
To determine the range of ¢ and ¢ and 6 and d that con-
tribute to W *'(z,,) for a given t,,, let_us consider fully
correlated excitation pulses (a;;=V a,a,), when the
PT-3 signal reveals the most profound dependence on ¢,,.

First we analyze the case of zero delay time, ¢,, =0.
The behavior of the correlation function T(t,) depends
implicitly on the spatial dependence of the incident fields,
which in turn is represented by the total Rabi frequency
f(t,4). As the pulses are assumed to be fully correlated,
f{t,¢) can be represented in the form

f(t,¢)=f|e_i¢+fz
alg)

a,

(7.

172

=|f (0 expli[@+argf (0]}, (1.2)

J
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where
al(¢)=a,+a,+2aa,) " *cos(d) , (1.3)
and
a,sing
tanf= — 1

acosp+(aa,)'

The phase 8 does not depend on time and thus cannot
affect the evolution of atomic population, while argf ()
is the same for all atoms. Thus, all the essential depen-
dence on ¢ is contained only in the absolute value of the
Rabi frequency |f (1,¢)], which in turn represents a fixed
spatial grating (or interference fringes) proportional to
al(¢), whose amplitude fluctuates in time according to
[f(0)l.

The larger the difference in |f(1,¢)] and |f(t,8)] for
atoms characterized by ¢ and &, the faster is the decorre-
lation of their populations. A difference in detunings (ve-
locities) leads to the same decorrelation. Namely, for
al¢)=ald), only those atoms which satisfy the condition
[see Eq. (C8)]

—_— (8—8)t
UValg —\/a(¢))2zp+w <1
contribute to the signal. At r,=0, however, the
asymmetrical part of the signal vanishes, and only corre-
lations between atoms with equal velocities are impor-
tant. Thus, one need consider only the first term in Eq.
(7.4) when ¢, =0.

For a(¢)=~ald), it follows from Eq. (7.3) one needs to
have cos¢ ~cosg. Consequently, the population correla-
tions can be of two types. For a given atom, character-
ized by “location” ¢=k,-r(—m/2<¢<3m/2), the first
type of correlation occurs with a neighboring atom hav-
ing

(7.4)

¢=¢ .

The second type of correlation arises for an atom located
at ¢ and another one at

(1.5)

~z— 1 —1< f\i
¢=—¢, if 5 S¢= 5 e
F~27—9, if%f:ﬁslzz.

These correlations are illustrated qualitatively in Fig. 11.
According to Egs. (7.5) and (7.6), all atoms are naturally
separated into two subensembles: those which are closer
to maxima —7/2<¢ <mw/2 or minima 7/2<¢ <3I7/2 of
the interference fringes, respectively. The atomic popula-
tions are correlated only within these subensembles,
which therefore contribute to the PT-3 signal indepen-
dently:

W,‘, D= 3

n,max

+W(3)

n,min

(7.7

where max and min designate “maxima” and “minima”
subensembles, respectively.

To continue the analysis, one must distinguish between
two limiting cases, that of (1) pulses with very different
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intensities (@, >> @y, ), and (2) pulses with nearly equal
intensities (a;=a,). In the first case one can see from
Fig. 11(a) that the spatial modulation of the interference
fringes is small compared with its average amplitude.
Hence, one can expect the behavior of the correlation
function T'(z,) to be almost identical for the “‘maxima”
and “minima” subensembles. In the second case the
*minima” subensemble is driven by a considerably weak-
er field than the “‘maxima™ one [see Fig. 11(b)]; this can
result in different contributions to T(z,) from the two
subensembles.

If the pulses have very different intensities, condition
(7.4) takes the form (6=98)

amm’p

3

The fact that expression (7.8) is not changed under the
substitution ¢ —=d+m;, ¢—¢+7 proves the behavior of
T'(1,) to be identical for the two subensembles. Suppose

(cosd—cosd)’ <1 . (7.8)

e
.

- ———

o‘
|
|

»

FIG. 11. Schematic representation of the two types of popu-
lation correlations for ¢,, =0 for different excitation pulses. (a)
The pulses are strong, fully correlated, and have very different
intensities. Rectangles depict the range of correlations of the
first type, while arrows depict the correlations of the second
type. The solid curve represents the averaged interference
fringes {|f(1)i*), while the dashed curves depict nonaveraged
interference fringes | £()|? for two different times. The effective
detuning, which arises at ¢,,70, is shown by the dotted curve.
{b) The pulses have equal intensities. All other conditions and
notations are the same as in (a). (c) The pulses are noncorrzlat-
ed; only the correlations of the first type exist, and the effective
detuning vanishes.
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an atom is located near an extremum of the interference
fringes (¢=0 or ¢=m). Then, $=¢ holds for the both
types of population correlations. Since Va(¢) varies
slowly near extrema, the amount of (¢ — @) that can still
contribute to T'(t,) is relatively large. According to Eq.

p
(7.8) this range is given by

10—l <(aput,) "P<<1. (1.9)

On the other hand, if an atom characterized by ¢ is locat-
ed at a slope of the interference fringes, then the correla-
tions of the different types are well separated in space,
and only the atoms satistying

16— 8! <(@p,t,) *'<<1

(first type of correlations) (7.10)

and

-0.5
mm’p)

l6+d—2ml <(amnt,) **<<1,

0+l <la «<l,

(7.11)
{second type of correlations)

can contribute to the signal. The ranges (7.10) and (7.11)
are much smaller than (7.9).
For pulses with equal intensities (a,=a,=a), condi-
tion (7.4) for atoms to contribute is
2
dat,

<l. (7.12
3 )

COS% —Cos ‘g

Comparing Egs. (7.8) and (7.12), one finds that for the
“*maxima’ subensemble, the behavior of correlations is
not changed significantly compared to the case
Qpax >> A, However, for the “minima”™ subensemble,
that is, for an atom located close to a minimum of the in-
terference fringes (¢ = ), the amount of (¢ —&) that can
still lead to a contribution to T'(1,) decreases drastically.

According to Eq. (7.12), this range is given by

i¢*$i<(a1p)"’"<<l , (7.13)

and does not differ from that of an atom located at a
slope of the interference fringes.

To consider what happens to the population correla-
tions when the pulses become time delayed (t,,#0), we
use the model developed in Sec. III, in which, for
0<t,, <<a;,, the pulses can be still regarded as fully
overlapping and the Rabi frequency, f (1,81, is stili given
by Ey. (7.2). In this model, every two-level atom acquires
an additional detuning h,4;(6)=G(1,;Na,a;)! *sing;
consequently, the second term in Eq. (7.4) is modified,
and the condition for atoms to contribute to T(1,) be-
comes

%[ \/m - ‘/Ta)lztp

N [6=8+h,q3(d)—hq ()4,

<l. (7.14
Jale) 714

The additional ¢-dependent detuning alters the symme-
trical part of the signal since it results in an additional de-
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phasing for atoms having equal detunings §=35. First
one notes that the additional detuning varies as sin¢ (see
Fig. 11). This implies that correlations of the type 2 for
atoms located at the slopes of the interference fringes are
destroyed for relatively small values of 1,,. For example,
for the atoms characterized by ¢=—@=m/2 and
¢=2m—¢=n/2 the difference in additional detunings
[see Eq. (7.14)] is maximal, and the correlation of
their  populations is  already  destroyed at
ty =73 g t,) 2 << 7>, For larger delay time and
pulses having very different intensities, the range (¢ — &)
that contributes to the signal for the atoms located in the
vicinity of the extrema of the interference fringes de-
creases from (pat,) %% 10 (@p,t,) """ as 1, varies
from O to t,, >>712. For t,, > r'? the range (¢ — ) which
contributes to the signal is the same for atoms at the ex-
trema and the slopes of the interference fringes (in con-
trast to the situation at ¢,, =0). This result also holds for
atoms near the maxima in the case of equal pulse intensi-
ties. However, the range (¢ —@&) of the correlations for
the atoms near the minima (¢ = ) shrinks from the value
(7.13) to an even smaller value cos(é/2)(at,)”%*.

In general, when a(é)=a(d), the detuning term
[second term of Eq. (7.14)] leads to eventual decorrelation
for t,, #0. However, for certain unequal detunings 8#8§,
this decorrelation can be significantly reduced. If

8—8=h (@) —h,4:(d) (7.15)

the second term of Eq. (7.14) vanishes and the correlation
of the populations coincides with that for the atoms with
equal detunings at t,,=0. For detunings §#8& which
satisfy (7.15), there is always a contribution to the
asymmetrical part of the signal.

The analysis of the population correlations presented
above and the representation of the atomic ensemble as a
sum of “maxima™ and “minima” subensembles helps to
explain the dependence of the signal on time delay ¢,
and grating order N. First, using Eq. (7.7), one can show
that, owing to Egs. (2.19), (2.23), and (6.9), the total PT-3
signals emitted in all directions by these subensembles are
given by

S W= S Wilh.=i. (7.16)
- x ns  x
such that the toual signal satisfies
S h_
3> W= (117

n= - x

The sum rules (7.16) and (7.17) are valid independent of
the delay time or correlation properties of the pulses.
For any given delay time ¢, and correlation parameter
®, one can regard W, .., Wi, and W' as some “dis-
tribution™ functions of the signal intensity relative to N.
Consequently, knowledge of W,.'(t,,) for a given n al-
lows one to draw conclusions about W,*'(t,,) for other
values of n.
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A. Pulses with very different intensities

In this case it has been shown that at ¢|, =0 the behav-
ior of T(t,) in both (“maxima” and *“minima”) suben-
sembles is identical [see Fig. 12(a)], and thus

W0 =T —"’(zp,8,5)=;lﬂi-fj://zzd¢fj:izzd$(p3(tp,¢,8)p3(tp,$,8))cosn (¢—8) .

The correlation function appearing in Eq. (7.18) is always
positive, as is W(’'. Owing to the oscillatory behavior of
cosn(¢—@) for n#0 the distribution W.*(t,,=0) is a
smoothly decreasing symmetrical function of n, charac-
terized by width n, with ny>>1.

For ¢,; >0 the two subensembles lead to the distribu-
tions W (t,,) and W' . (t,,) which acquire some

n.max n,min

asymmetry [see Fig. 12(b) and Eq. (7.15)]. However, the
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FIG. 12. Distribution of the signal intensity as a function of
order N for delay time (a) t,; =0 and (b) t,, =27!? @, the total
signal intensity W,*'; +, the signal intensity W, ... correspond-
ing to the “minima” ensemble; X, the signal intensity W, ..
corresponding to the ‘*maxima” ensemble (W.'=W,
+ W, nax)- The pulses are fully correlated and have very

different intensities: =1, a1, = 10*, @,1, = 10%, Ap1, = 14.
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(t,,=0)=W3 (t,,=0)=0.5W,"(1,,=0) ,

n,min

W(})

n,max

where, according to Eqs. (2.23) and (2.19), W'¥ is given
by

(7.18)

f

asymmetry of the “‘maxima’™ distribution is positive
(W (ti2)> W2 (11,)], while that of the “minima”
is negative, such hat they are exactly compensated in the
joint “distribution” W'*'(t,,), which is symmetrical rela-
tive to n (and ¢,,).

Some insight into W:*(¢,,) can be obtained by first
considering W{*'(¢,,). In light of the discussion above
about the destruction of correlations with increasing t,,,
one finds that the signal Wy (1,,70) < W'0). When
t,, becomes larger than 7%, oaly the correlations of the
first type survive, and the signal W3 '(1,,) tends to its
minimum, W' (e ). Thus, the signal W' (1,,) exhibits
a peak of width 7!? [see Figs. 8-10 and the discussion
that follows Eq. (6.43)].

To see the connection between W,'(T,,) (n#0) and
W'(1,,), one can use the fact that in the strong-field re-
gime the number n, of the PT-3 signals of comparable in-
tensity is large, and owing to relation (7.17) can be ex-
pressed as

nolt ) ~{W'e, ] " (7.19)
Since the signal W' decreases with increasing t,,. it fol-
lows that n, increases with increasing ¢,, (in the limit
a)st;; <<l considered in this paper), 1ie,
ngl0)=nylt;, =0 <nglec)=n(r,>>r%). Now 1t 1s
possible to get a qualitative understanding of the depen-
dence of the signal W,>' with a given n on t,,. As 1,
varies from 0 to t,, > 7!%, n, rises from ny(0) to n,l x)
and the “distribution” function W,*' becomes wider and,
consequently, lower 1n the center (small n) and higher at
the wings (large n) (see Fig. 12). For fixed n <n, 0. W,"
decreases with increasing t,,, while for n 2 n,( ), the
signal W'Y increases with increasing t,,. Thus in the
former case there is a peak centered at f, and in the
latter case a dip. In the intermediate range of n,
ngl0)<n <ngloo), the signal first increases and then de-
creases with increasing f,. For 1, > r!? the signal W."
reaches the background value shown in Fig. 12(b). The
narrow dip in the central peak that can occur for fully
correlated pulses and small n can be traced to the fact
that at ¢,, =0 the contribution of the correlations of the
second type to the signal is negative, and they are des-
troyed on a time scale ¢, <<7!2. For example, at t,, =0
this contribution to the first-order signal W{* is charac-
terized by (¢ —@)=m and is negative as cos(¢—¢)= —1
in Eq. (7.18). Since these correlations are destroyed as f,
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varies from 010 ¢}, =7{2/(@pyqf,)' /%, this leads to the dip

in the central peak having this width.

B. Pulses with equal intensities

In (his case the behavior of T'(1,) is different for the
two suberisembles even at t,, =0 [see Fig. 11(b)], and con-
sequently W3\ (2,,=0)FW:3). (£,,=0). As these sig-
nals represent Fourier transforms (phase factor
explin(¢—¢)]) of T(t,), and, as discussed previously,
the range of (¢— ¢) that contnbutes to the signal is much
narrower for the “minima” subensemble, it follows that
the distribution W,‘,J,:“,,(t12 =0) over n is much wider and
lower than WO (1,=0); that is, nggn(t;;=0)
>N max(t12 =0) [see Fig. 13(a)]. Hence, W, (t,,=0)
and W), (t,,=0) determines the signals of small and
high orders, respectively. As in the case of pulses with
very different intensities, the distributions W), (t,)
and W, 3) .1212) acquire soine positive and negative asym-
metry, respectively, as t,, increases. However, the
asymmetrical parts of these signals are not canceled in
W'3t,). Ast,, tends from O to t,, >> 72 both “distri-
butions” become wider and lower, and the relation
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FIG. 13. Distribution of the signal intensity as a function of
order n for different delay times: (a) —¢,;=0; (b} —¢,, =272
The fully correlated pulses (& =1) have nearly equal intensities
(a1, =105, a,t,=100), and Apt, =14. All the notations are the
same as in Fig. 12.

6211

Ro.min{f12)> Mo max(t1y) is satisfied for any 1,, [see Fig.
13(b)}. As a result. the signal of small order n is still
determined by the “maxima” distribution
(W3t ) =W, (£,;)] and has positive asymmetry,
while that of high order is determined by the “minima”
distribution and has negative asymmetry. When the
Doppler width is sufficiently large such that

172
o
’
b

condition (7.15) can be satisfied in the whole range of
¢ —& contributing to the signal, and the asymmetry be-
comes most visible.

In the opposite limiting case of noncorrelated pulses,
the position as well as the amplitude of interference
fringes varies in time [see Fig. 11(c)]. Therefore only the
first type of the population correlations exists at t,, =0.
Moreover, the additional detuning vanishs, and nothing
changes for t,70 as compared with the case of zero de-
lay ti:ne. As a result, W5 (¢,,)=W5'0) and does not
vary with ¢t,,.

Ap >

C. Dephasing of two Bloch vectors

Up to now, we have been concerned with the signal as
a function of 1), for fixed #,. One can also try to under-
stand the qualitative behavior of the correlation function
T(1,)=(py5;) as a function of ¢, for fixed t,,. Explicit-
ly, T(1,)=exp{At,]/3 [see Egs. (6.9) and (6.10)] and
leads to all the results for the PT-3 signal discussed in
Sec. VI. This correlation function describes the relative
dephasing of the components p; and p; of two Bloch vec-
tors, R and R, associated with two-level atoms having
different velocities and spatial positions, r and T, such
that

5#8 and ¢=o(r)#P(T)=4 . (7.20)

To understand the origin of Eq. (6.9), we examine the ro-
tation of R and R using the mode! discussed in Sec. IIL
We consider the excitation pulses to be fully overlapping
and take into account a nonzero delay time by introduc-
ing an additional detuning h,,3(#y;,4) given by Eq.
(3.10). 1t follows from condition (7.20) that, generally
speaking, h,q;7Hh,q 4. Hence, even if two atoms have
equal velocities, their effective detunings differ if they are
located at different spatial points. Moreover, these atoms
see different field amplitudes at different spatial locations.

First we consider the Bloch vector R. It rotates with
the angular velocity H given by

X
H= Y ,
—(8+h,,)

7.21)

{see Eq. (3.6)], where X and Y are the real and imaginary
parts of the Rabi frequency f(t) associated with a total
electric field, X +iY = — f(t), and the atom-field detun-
ing 8 is modified by the addition of A, ;. For the
remainder of this section we assume that 7/=r_;i,j=1,2.

Owing to the fluctuating character of the angular ve-
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locity ¢omponents X and Y, the Bloch vertor R rotates
randomly and its tip undergoes a fast, random walk
movement over the sphere having unit radius. This sto-
chastic movement is superimposed on the free precession
of the Bloch vector about the 3 axis with the constant an-
gular velocity —(8+h,4 ;). By moving from the “abso-
lute” reference frame, where the angular velocity is given
by H, into the reference frame that rotates about the 3
axis with angular velocity —(8+h,,;), one transforms
away this regular rotation. In the new reference frame
the component of the vector H along the 3 axis is zero
and the X and Y components are modified. However, if

(8+hyyy)7, <1, (7.22)

the modification of X and Y can be neglected. In the fol-
lowing discussion the analysis of the rotation of the vec-
tor R is carried out with respect to the rotating reference
frame.

During time interval 7., X, and Y can be considered as
constant, and the Bloch vector R deviates from its initial
position R{¢) by a small angle

XTI ~(X2+YH 21 <1 . (7.23)

The rotation occurring within the next interval of dura-
tion 7. is independent of any previous one. According to
the random walk model, after m such rotations, at time
t, =mr_ the Bloch vector R(¢ +1, ) deviates from R(t) by
an angle y(¢,) whose mean square is

(X DN=mx¥r.))~2ad), . (7.24)

From Eq. (7.24) one can see that the Bloch vector loses
memory of its initial conditions

R(0)=(0,0,1) (7.25)

in a time period of order [a(¢)] ™!, when it has rotated by
an angle of order unity* (see Fig. 14). The criterion
(7.23) of the random walk model at the same time justifies
application of the decorrelation approximation in solving
the Bloch equations (2.10), and leads to the exact solution
(5.3) for {p;). For t>[a(¢)]™!, the position of the
Bloch vector can be regarded as random. For such times,
the mean square values of its components are equal,
namely

(P =) =) =1, 1>[a®]™ . (7.26)

The second Bloch vector R has the same initial posi-
tion (7.25) and undergoes a similar rotation that resuits in

(P =D =(p}=1 (7.27)
for times t > [a($)] "

To start the analysis of the relative dephasing of R and
R, we first return to the “absolute ’ reference frame. Be-
cause H#H, the tip of the vector R follows a trajectory
that differs from that of the vector R. To find the relative
dephasing of the Bloch vectors induced by fluctuations,
one first has to eliminate any possible constant angle 6,
between their projections on the plane defined by the axes
1 and 2. This angles does not affect the populations p;
and g, and leads only to the constant phase shift between
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the coherences, p,+ip, and g, +ip,, of two atoms. The
angle 6y is given by
B,={argf(1)) —(argf (1))
and can be gbtained by the minimization of the expres-
sion IH—H%P), where Hg_ represents the vector H ro-
tated by the angle 6, about the 3 axis. Solving the equa-
tion
d_

7.28)
d6, (

(IH—ﬁ,,O|2>=0

asin(¢—@)+a ,(sing —sind)

acos(¢~@)+a,+a,(cosd—cosd)

(7.29)

Only after the Bloch vector R and its angular velocity
vector H are rotated by the angle 8, given by Eq. (7.29),
about the 3 axis, which is when the rotations

R—R,;A—H,

are fulfilled, can one say that the remaining divergence of
the trajectories of the Bloch vectors represents the pro-
cess of their relative dephasing.

We need only consider Bloch vectors R and ﬁ% whose

tips follow close trajectories, since it is only these atoms
for which the relative dephasing is sufficiently small for
time t =1, to contribute appreciably to the signal. In the
strong-field regime the necessary condition for a slow rel-

ative dephasing of the Bloch vector is

ald)=ald) . (7.30)

Condition (7.30) implies that the two considered atoms
are at positions where the intensities of the interference
fringes are nearly equal. At time (~[a(¢)]"'
=~[a(¢$)] ™' <<t, when conditions (7.26) and (7.27) are al-
ready satisfied, but the relative dephasing is still very
small, the correlation function T'(¢) takes the form

Tla H=(pp)={p})=(p})=1. (7.31)
Fora !'<t< t,, however, the rotation and, consequently,
the process of dephasing of the Bloch vectors continues.
As a result, T(t) slowly decreases from i and tends to-
wards 0. The question we address is as follows: What is
the speed of this process and what is its origin?

By simple geometrical consideration one can show that
in the strong-field regime the correlation function 7(t,)
is expressed in terms of an internal product of the Bloch
vectors (R-R) as

T(1,)=1{(RK)) . (7.32)

Equation (7.32) implies that it is convenient to analyze
the relative dephasing of the Bloch vectors in a reference
frame which we call the “R" frame, tied to the vector R,
rather than in the “‘absolute” frame where both of the
vectors are rotating. In the absolute frame each of the
three axes of the R frame rotates with the angular veloci-
ty H and at 1=0 coincides with a corresponding axis of
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the absolute frame, that is,
M, =[HM,]; IM,;[*=1,
mj,(0)=5 jy‘ =112’3 ’

(7.33)
i
where the unit vector M; with coordinates
{m,;,m,;,m;;) determines direction of the i axis of the R
frame at time ¢. All three vectors M, , ; undergo random
rotation, remaining perpendicular to each other (see Fig.
14). It has been shown* that for t>>[a(¢)]”! their
coordinates have the following correlations:

( m,,(t)mj:,'(l "T)) = %5”'5,-,-'
e @i jf j=1,2

X e-Za(.t)Iri ifj=3 ,

(7.34)
where the quantity [a($)]™! plays the role of a correla-
tion time.

The vector R coincides with the 3 axis M; of the R
frame and, in this frame, is given by Rz =(0,0,1) at any
time, where the script R means that a vector is con-
sidered in the R frame. Then, T'(¢,) given by Eq. (7.32)
transforms into
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T(t,)=1(pgs) , (7.35)
where {pgp;) is the average third component of Rp.
Thus, the two-atom correlation function in the absolute
frame is now expressed in terms of the averaged com-
ponent of the single Bloch vector in the R frame. Rota-
tion of this vector takes the form

ﬁR=[8HRﬁR ];5HR=(ﬁ90—H)R . (7.36)

According to Eq. (7.33), the components 8hg; of the vec-
tor 8H are given by
3
Shg;= 3, m;(Hg —H), (7.37)
j=1

and 8Hjy represents the vector (ﬁoo_H) that undergoes
some additional random rotation. This rotation is in-
verse to that of the Bloch vector R in the absolute frame
and is described by characteristic time ~[a(¢)]™! [see
Eq. (7.34)]. All the components of the vector 8Hy are
fluctuating quantities, and using Eqs. (7.37) and (7.34) one
obtains their correlation functions:

(8hp;()8hg;(t =) =48, ({[f (= fo (OIf*t=1)=fF (1 =T)]) +(8_+hyg3—hoy;)e ST S>> a(d) . (7.38)

One can see from Eq. (7.38) that fluctuations of the angu-
lar velocity vector in the ““R” frame are characterized by
two correlation times: the time 7, of the Rabi frequency
fluctuations and the time [2a(¢)] ' associated with ran-
dom rotation of the component —(8_+h,q 3—h,q3)g Of
the vector 8Hy, the latter time being much larger than
T..

Since the dephasing of the Bloch vectors is assumed to
be slow relative to their random rotation, flR varies only

R(0) -R(0):M3(0)

/Mﬂt)

’/ ~
7 _--~R({t)
Vil -t

== R(t)=Mat)

M{0) M,(0)

FIG. 14. The positions of the axes M, , ; of the “R” frame,
tied to the Bloch vector R (R=M,;), for time r=0 (the solid ar-
rows), and after random rotation, for t#0 (the dashed arrows).
The initial position of the Bloch vector R coincides with R(0).
However, for time 0, owing to difference in angular veloci-
ties, H(1) depicted by the dot-dashed arrow is not equal to R{?).

f

slightly in time [2a(¢)]™'. As [2a(¢)} ! is the largest
correlation time of the fluctuating vector 8Hy, under this
condition the random rotation of the vector Ry can be
considered to be of the random walk character, and the
decorrelation approximation can be used in solving Eq.
(7.36) [see discussion of Eq. (7.23)]. The third component
of the vector {Ry ) is then given by

(Prslt,))=e *% (7.39)
where
o 2
#=sz S (Bhg,(0)8hg(t —7))dT . (7.40)
i=1
The speed of dephasing u can be represented as
p=pstug, (7.41)

where p1, describes the dephasing induced by fast fluctua-
tions of 8Hy (correlation time 7.), while ug originates
from relatively slow fluctuations with correlation time
[2a(¢)]™". Using Eq. (7.38), for {5 one obtains

w=1 [ O~ Fq NS =)
=S5l —n]dr. (7.42)

Carrying out the averaging in Eq. (7.42) and using the ex-
pression (7.20) for 8, yields
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_ 2{2a,a)[1—cos(¢— )] — a}y(sing —sing)*}]
i 3[a,+a,+a;,(cosg+cosd)] '
(7.43)
The second part of u,us, is given by
#a=%(5—+had,3_5ad.3)2f:e_zawf‘”
2(8_+ G (ty,)a,(sing —sind) |?
_A 12)@yy(sing —sing )] ’ (7.48)

3la,+a,+a,,(cosd+cosd)]

where we take into account condition (7.30).
From Egs. (7.35), (7.39), and (7.41) one finally obtains
the correlation function T'( tp) in the form

T(t,)=5exp{—(us+pgh,] . (7.45)

Expression (7.45) coincides with (6.9), since (u,+us)
given by Eqs. (7.43) and (7.44) is equal to —A, given by
Eq. (6.10). The part of A, which is independent of 8 _ and
G (1,;) coincides with u ., while the terms that depend on
these parameters are contained in .

Since we consider the limiting case where the relative
dephasing of the Bloch vectors is a slow process com-
pared with their random rotation, inequality

Bpois <<2a()t,,2a(P)t, (7.46)

must be satisfied, a condition equivalent to Eq. (CS).

VIII. QUANTITATIVE RESULTS
IN A STRONG-RELAXATION LIMIT y ;. T, >>1

In this section we calculate the PT-3 signal under con-
ditions when relaxation plays an essential role in signal
formation. It is assumed that

v > L=t =) >y, (8.1)

P

The condition y,(¢,;—t);,—1,)<<1 insures that the sig-
nal is not seriously attenuated in a time period between
the second and the third pulses. At the same time, the
condition ¥,t, >>1 guarantees that relaxation of atomic
coherence plays an essential role during the excitation
pulses. The latter condition can result from pressure
broadening produced by a buffer gas.

Kt
2y,

-2(a1+az)(p

W) =e KoI}5)+

+2aiyd, - ((§M, 4 (§) = 2applay +a )l (O], - (§)+ 1, (D]

where I, is a modified Bessel function and {=2a,,t,.
The last term in Eq. (8.6), proportional to y?, is contrib-
uted by the steady-state solution T, and should be taken
into account only when the rest of the signal vanishes.
When the intensity of the pulses increases, so that a
strong-field regime (6.8) is realized, two very different sit-
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A. Weak-field regime

In a weak-field regime (6.2) and under condition (8.1)
the strongest signal is of order n =%1. One can use Eq.
{2) to obtain the needed Fourier component in the form

20,057+,

T“’_”(t )=a2 ’2+
PLOTIER T 424 87

(8.2)
In the strong-relaxation limit, Eq. (2.23) is no longer val-
id, and the PT-3 signal must be obtained directly from
Egs. (2.14) and (8.2). Integrating over 8, in Eq. (2.14),
one arrives at the signal

K aa,t
WI=Koabt2+ ——2L 8.3)
2y,
where
2 \/5
K,=exp % —e L& ,
D D
2 (8.4)
k== + Lovizg
2 A} A,

Similar to the signal in the weak-relaxation limit [see
Eq. (6.7)], the signal (8.3) does not depend on the delay
time. However, in contrast to that case, the first term in
Eq. (8.3), which depends on the correlation of the pulses
and is proportional to the square of the mean amplitude
Pt t,) of the population difference grating, can be much
larger than the second term proportional to a,a,, which
is independent of this correlation and originates from the
stochastic part of the grating.

B. Moderate and strong-field regimes

ii the intensity of the pulses increases so that
@ maxtp 2 1, the correlation function T(1,) is given by

8'Q,2?’xtp
4y2+62

2xt

T(t)=e 7|1+ +T,, (8.5)

where x and Q are defined in Egs. (4.5) and (4.6) and we
neglect all the terms leading to minor contributions to
the PT-3 signal. Using Egs. (2.19), (2.14), and (8.5) one
obtains the PT-3 signal

Py [ 12, (O+IE_ () +Had+ad+2ad)IHE)

+0

(8.6)

ﬁ]

max/ t

r

uations may occur, depending on the degree of the mutu-
al correlation of the pulses and their intensities.

If the pulses are almost fully correlated and have al-
most equal intensities (a,=a,=a,,=a), so that condi-
tion (6.52) is satisfied, the first term in Eq. (8.6) dom-
inates, and the PT-3 signal is given by
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2
exp(—n"/2at,) —yq+ay-2ayyn,

dmat, 8.7

W'(‘ N= KO
The signal (8.7) does not exhibit any dependence on delay
time ¢, and for n <<V'at, it represents a plateau of
height (4mat,)”!, provided atj, <<1. The PT-3 signal
(8.7) is completely determined by the mean amplitude of
the population grating, since

W =KqpUn) . (8.8)

In contrast with the results in a weak-relaxation limit (see
discussion at the end of Sec. VI), when y,¢, >>1, the sto-
chastic contribution to the population grating is
effectively suppressed, while the mean amplitude is not
effected by the relaxation of atomic coherence. Transi-
tion from the weak-relaxation limit to the strong-
relaxation one is shown in Fig. 15.

For noncorrelated pulses or correlated pulses with very
different intensities, condition

a;+a; >>2a,2,t,,_l (8.9)

is satisfied, and the terms which are proportional to K,
and K, in Eq. (8.6) become exponentially small. In the
limit (8.9), which we examine for the remainder of this
section, the signal is solely determined by the contribu-
tion from the steady-state solution T.

For moderate field intensities

1, ! <Ay <Y, (8.10)
one can approximate
2
Yi 2ay, -
T(t))=T,= - (cos¢+cosd)
PO (@t a;ta, i’ s
—4a%2—cos¢cos$
(a,+a,)?
81QI%y,
(a,+a,)4y2+82) |~
8.11
— T ] T I o7
3
5 4
:
]
)
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Z
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[ye]
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-4 -2 0., 2 4
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FIG. 15. Signals of order n=1 vs t,,/7!? for different trans-
verse relaxation parameter y,1, in the case of weak longitudinal
relaxation: ¥,1,=0.2. The fully correlated (®=1) pulses have
nearly equal intensities @1, =100, a,f, =105, and Ap1, =14.
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The strongest signal occurs for orders n =+1. Picking
up the terms proportional to exp[i(¢—¢)] and integrat-
ing over 8 in Eq. (2.14), one finds the PT-3 signal

2 2
Yi Kyay,

(a,+a,)? | (a;+a,)?
1 2

2K a,a
(3) — 141,
Wii=

(@, tayy, |’ (8.12)

which exhibits no dependence on delay time.
However, when the pulses become very strong,

al+a2 >>a12’71 ’ (813)
one has
i
T,)=Ty=—75—— . (8.14)

It is shown below that in the regime (8.13), which can be
interpreted as a strong-field regime in a strong-relaxation
limit, the correlation function (8.14) leads to the PT-3 sig-
nal whose dependence on delay time resembles very much
that in a strong-field regime in a weak-relaxation limit.
Integrating over ¢_ in Eq. (2.19) and over &, in Eq.
(2.14) yields

2
worm _ Kori
"oy latay)
ZITED Sl (6D G i) § N K
X — d¢, ,
0 v1+2Y b+
(8.15)
where
Y =2n2[1-®(1--G¥)cos’$. ],
2 (8.16)
_ aa,
7])’ (a‘+a2)‘y,

For one strong and one weak pulse,
Amin < Ye < Aax 1

it follows that Y << 1 in Eq. (8.15), so that the signal can
be approximated as
2K OY%amin
Y?amax
The signal (8.17) has the same dependence on the correla-
tion and delay times as the weak-relaxation limit signal

(6.14), but it is much weaker.
If both pulses are strong, that is if

W= [2—d(1-GY)]. (8.17)

a,a, >y, , (8.18)

the main contribution to the integral in Eq. (8.15) comes
from the regions where Y >>1, and for n+0, Eq. (8.15)
can be transformed into

2Ky} w2expl—nV2/VY)
W= 0 p .
" omy ety fo V2y a4+

(8.19)
The integral in Eq. (8.19) can be estimated by the same
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method used to approximate the integral in Eq. (D7),
The strongest signal, characterized by small n, n << Nys
for strongly correlated puises (1—® <<1) exhibits a
symmetrical peak centered at ¢,, =0. The signal intensity
for t,, <7!% is given by

W(3)=_._KO_Y%—__
" wlatay)ym,
2
Xln Ty ,  (8.20
nlexp(—Z/2)+V'Z +exp(—2Z)]
where
1-®(1-GH)p?
z=[ I . (8.21)

n2

If one compares Eqgs. (8.20) and (6.29), one finds that the
signals in the strong-relaxation and in the weak-
relaxation limits are simila1, if 2., >>a.;, (see Fig. 16).
The peak has width |t,,/=7!? and for fully correlated
pulses (®=1), is approximately In(7,/n) times higher
than the background signal

KO‘V%

3—
ma;tadym, ’

n (8.22)
which would be obtained for non-correlated pulses
(&=0).

The signal of higher order n > 7, >> 1, is given by

o 2Kori oo | 214+ @0=GY)]
" mla;+a,)y,1, 41,
2
x1, [ 221=67) | (8.23)
4177

For fully correlated pulses the signal (8.23) exhibits a pro-
found dip centered at t,,=0, and for |¢,,/ > /}? it coin-
cides with the signal for noncorrelated pulses.

One can see from the results presented above, that un-

PT-~3 SIGNAL (arbitrary units)

0
ta/ Te“

FIG. 16. Signals of order n=1 vs t,, /72 for different trans-
verse relaxation parameter ¥,f, and a small longitudinal relaxa-
tion parameter: ¥4, =0.2. The fully correlated (®=1) pulses
have very different intensities a2, =100, a,f, =10 and
A p‘p =14.

V. FINKELSTEIN AND P. R. BERMAN 41

der condition (8.13) the PT-3 signal in the strong-
relaxation regime resembles that in the weak-relaxation
time, attenuated approximately by a factor

3V2uKy?

8.24
2}’,(a,+a2) ( )

b4

while the parameter 3(4y,)”! plays the role of the
effective pulse duration.

IX. SUMMARY AND DISCUSSION

In this paper we have considered pulses with rectangu-
lar envelopes; that is, rise and fall times ¢, and 1, of the
pulses have been assumed to be negligible:

t,=t,=0. 9.1)

If one takes into account nonzero values of ¢, and 7, one
sees that, for the symmetrical part of the signal, Wy, gen-
eralization of the results obtained in Sec. VI is straight-
forward. Since Wy is proportional to T*™ ~")( t,,8,8), one
can show that all the results for W remain valid provid-
ed that the substitution

ait,= [ a0t 9.2)
-

is made. Thus, the results leading to nearly symmetrical
signals can be still used. However, the asymmetrical part
of the signal may undergo serious charge, if
t,,ty>a”',A5". In this case the effective range of detun-
ings that can contribute to the signal narrows from A, to
min(z,” ¢ 73 1). As a result, the parameter D increases:

_Yatay) (a;+a,)max(¢},t})
4A}t, t,

, 9.3)

and asymmetry of the signal up to order n =a max(t,,t,)
is suppressed [see Eqs. (36) and (38)]). If max(¢,,t,)~1,,
signals of all orders become symmetrical.

It has been shown in Sec. VI that in a weak-relaxation
limit the PT-3 signal in many cases depends only weakly
on correlation properties of the pulses when |t},| > 7%
This effect, however, cannot be interpreted as a loss of
memory of the pulse correlations by the two-level atoms.
This memory is preserved, if alt,zl << 1, and can be re-
vealed under certain conditions, as in the case of the sig-
nals of high orders induced by excitation pulses having
equal intensities. The origin of the ¢ independence of
the PT-3 signal for |¢),| > 712 can be related to the fact
that the third pulse is weak and noncorrelated with the
first two. As a result, in the weak-relaxation and the
strong-field limit, different velocity groups of atoms con-
tribute to the signal independently [W,*'~T(1,,5,8)]. It
will be shown elsewhere that in the case of two-pulse
transients, when the atoms with different velocities might
contribute to the signal coherently, the difference in the
signals for correlated and noncorrei-ted pulses for
|#,,1 > 72 can be significant.

In summary, we have studied the three-pulse optical
coherent transients induced by broad-bandwidth pulses.
Within the approximation of a small delay time between
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the first two excitation pulses, we have considered,
analytically and numerically, different values for the
pulse intensities, relaxation times, and Doppler width. It
was shown that if the intensities of the excitation pulses
are high enough, stochastic spatial gratings of many or-
ders can be created in the population difference of two-
level atoms and the signals with comparable energies
might be emitted in many directions. These signals, as
functions of the delay time, can vary significantly on the
time scale of the cross-correlation time 7.2 of the pulses,
provided the relaxation processes in the atomic vapor are
negligible on this time scale. We predict that the signal
for order n <<{(apyt, }!”? as a function of delay time ex-
hibits a peak having width |t,,|~7!2. When the pulses
are strongly correlated and their intensities are not equal,
this peak has a very narrow dip at ¢,, =0 whose width is
much smaller than 7!2. The signals of higher order can
exhibit eithier a dip or a considerable negative asymmetry
depending on the Doppler width of the atomic ensemble
and ratio of intensities of the excitation pulses. All these
features occur for strongly correlated pulses, when
Apintp > 1

For a two-level atom driven by two arbitrary pulses
with delay time f,, satisfying |t,,] <<ap,,, we have
shown that the final position of its Bloch vector can be
described as a result of rotation performed under the
influence of two fully overlapping pulses that coincide
with the original pulses. However, as a result of this
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transformation, an additional fluctuating detuning pa-
rameter appears in the Bloch equations, which is the only
effect of the time delay of the pulses. We have interpret-
ed the obtained results by using this model.

If the relaxation cannot be neglected and the signal is
detectable (T, <t,<T,), the signal, induced by fully
correlated pulses with equal intensities, is much stronger
than in all other cases and does not show any dependence
on delay time. If the intensities are different, the PT-3
signal exhibits a profile which resembles that in a weak-
relaxation regime; however, the signal is much weaker.

The experiments performed on different atomic vapors
indicate that the PT-3 signal is very sensitive to the atom-
ic level structure, which is usually much more complicat-
ed than a two-level system. The only experiment,'® of
which we are aware, where the active atoms could be
realistically approximated as a two-level system, revealed
direct dependence of the signal on )2 in the case when
one of the pulses was strong. Extension of this work to
the case of two strong pulses would allow for a more
complete test of our results.
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APPENDIX A: GENERAL EXPRESSION FOR THE PT-3 SIGNAL

The energy W' of the PT-3 signal radiated in the direction ky;+ nk, under the influence of the third pulse that starts
at time t3, t; =1, +1,3, and has duration t;, can be defined as'?

W=capm ™ [ [us—awE—a) [f,’”<p;,7;<,;5)p;,,;m;s)>dz dsds,
3

(A1

{n)

where C is a constant. The third pulse is weak, and therefore a component p,;’ of the atomic coherence p,;, satisfies the

equation
—y, e —1%
p=—(y, +i8)pl +ifpi1Qe T,
where

(n) itky +nky)r

Pab(r): Epabe ’ f3 zuabﬁ—l(;}(t) .

Substituting the solution of Eq. (A2) into Eq. (A1), one has

Wr=cahm ™ [ [us~amE-4)

(A2)

(A3)

X [foxdtfo'dt'fo'dt”(f,(t’ﬂ,)f§(t"+t3)

Xe

Xp§(12;8)py " "(1);8)) {d8dE .

Syl T by M=) = (—iB ey M)

(A4)

Since the third pulse is not correlated with the first two excitation pulses, averaging in Eq. (A4) can be carried out sepa-
rately for (¢’ +23)f$(¢”+1;) and p{"(£0;8)p5™"(17;8). Using the approximation of 8-correlated fluctuations for the

third pulse,
(f3( e )f 5 (" +15)) =ab(t' —1") ,

(AS)
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where 0<t', t” <ty,, and a;=(|f;|*)72, and integrating over ", t, and ¢’ in Eq. (A4), one finally gets the expression

- — —40 — —_—
WO =C(2y A a1 —e Tiie ) [ [ HO=BWB=) 1ir-m10.5.5))ap 5

Introducing W'’ by the relation

- — .0
W:|3)=[C\/1_Ta3(l—e 27,’3p)]_12y1ADe27’l(l” ‘p)cw("”’

one obtains Eq. (2.14).

APPENDIX B: EXPRESSION FOR T'"~'(¢)
IN A WEAK-FIELD REGIME

In a weak-field regime

a,,a, <<max[t, ', min(y,,y,)] (BD

perturbation theory can be applied in Eqgs. (4.1)-(4.3).
This is more convenient than taking the weak-field limit
of the general solution (5.4). The population gratings of
order 1 dominate the process and lead to the signals of
equal intensity. Iterating Eqs. (4.1)-(4.3) twice yields
2
(50, — D=2 —¢ 71
Yi

t et =2y =) =2y (=)
+2a,a e
af [
Xcosd_(t'—1t")dr'dt" .
(B2)

In 2 weak-relaxation limit (6.1), one obtains Eq. (6.3). In
the case of strong transverse relaxation (8.1), Eq. (B2)
leads to Eq. (8.2).

APPENDIX C: EXPRESSION FOR T'(¢;)
IN A WEAK-RELAXATION LIMIT
IN A STRONG-FIELD REGIME

In a weak-relaxation limit (6.1) the solution (5.4) is
given by
3 At
T(,)= >e'?T;, (C1)

i=1
where the exponents A, , ; are the roots of the equation
A(A+x)(k+3x)=—2y(k+x)—6}(k+2x) . (C2)

At time ¢, only those atoms whose Bloch vectors have
not dephased contribute to the signal. In the weak-
relaxation limit, the main contributions to the integral
(2.19) come from those regions (¢, ), where solution (C1)
is not exponentially small, that is, where at least one of

the indexes A; satisfies the condition
Ait, <<1. (C3)

If the pulses are not fully correlated or their intensities
are not very close to each other, i.e., if

6
2y, +id_ (A6)
(A7)

|
(a;ta,—2ap)t,>1, (C4)

the regions in the plane (4,4) that satisfy requirement
(C3) are defined by condition

V7,6, <<x . (C5)
Then the roots of Eq. (C2) are given by
2y +8)
1= T s
Ary=—x, Ay=—3x (co
with T, , ; being being equal to
T,=LIT,| «<1,T;=1. (CT

The root A, is much smaller than the other two; under
condition (C4) it follows that xt, >> 1, and only the term
having index A, on the right-hand side of Eq. (Cl1) can
provide a contribution which is not exponentially small.
Taking into account Egs. (C6) and (C7) yields

2Ay +85),
3x

T(1,)={exp (C8)

If condition (C5) is violated, the difference between the
exact solution (C1) and the approximate solution T'(z,)
given by Eq. (C8) is exponentially small. Thus, one can
use Eq. (C8) for any y, &, and x.

If the pulses are fully correlated and have almost equal
intensities, i.e.,

(al+a2_2a12)tp<l N (:>9)
condition (C35) is violated for the atoms situated close to
the minima of the interference fringes, the regions for
which the field is weak. Consequently, for

g, |tm| cc —L <1,

(C10)
o +ay), 12

Equation (C8) is not valid. Despite this fact we are still
be able to use Eq. (C8) since the contribution to the PT-3
signal from these regions is of order of [(a1+a2)tp]"'
and can be neglected.

Hence we may conclude that in a strong-field regime
the signal is governed by the term (C8) alone. Taking
into account expressions (4.5), (4.7), and (5.7), one gets
Egs. (6.9)—(6.10) of the text.
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APPENDIX D: CALCULATION OF W{*' IN A STRONG-FIELD REGIME

Using the symmetry of Eq. (6.10) under the permutations
¢>—¢+2mm; m=0,%1,. ..

we can rewrite Eq. (2.19) as

- . _ 1 L4 /2 —2in¢ _
yal "’(t,,b-)—?fod¢+f_"/2T(t,,)e dé._ , (D1)
with
T(tP;B_)=}exp[—2tp(4sin2¢_{a,a2—[l—Gz(tlz)]a§2c0s2¢+]
+82_ +48_G(t12 )alzsin¢_cos¢+)[3(al+a2+2alzcos¢_cos¢+)]_l] . (D2)

In order to obtain the analytical expressions for the PT-3 signal with two strong pulses, one substitutes (D1) in Eq.
(2.23) and carries out the §_ integration to obtain

W=W+W,, (D3)
with symmetrical, W, and asymmetrical, W,s, parts of the signal given by
_ 2 T w/2 —b
Ws—sﬁfo d¢+fo dé_e bcos2ng_ , (D4)
_ i T w/2 —b .
Was=+ 7 [ dé. [ dé_e tsin2ng_lerftia) , (DS)

where erf is an error function and
V2®Gysing_cos,

a= {(1+V®Bcos¢ _cosp . )[1+D(1+V®Bcosd_cos )]}

_ 27sin’$_(1—dycos?_)

b= , (D6)
\ 1+ ‘/al%osdt_cosdbr
da,ay, 172 Aaja,)!? 3a,+ay)
= [—2L | >, ¢,=®(1-G?)<}, p=———— <1, D=——+——
\, K a,+a,) 0 h a,+a, 4ALt,

¢ Using the fact that 7>> 1, one can analytically carry out the ¢_ integration in Eq. (D4) provided n#0. Using these
conditions, the approximation sing_ =~¢ _,cos¢_ =1 in expressions (D6} for a ard b, and setting the upper integration

* limit equal to o, we carry out the integration over ¢ _ in Eq. (D4) to obtain
L

‘ 1 o [ 1+V®Bcosp, |'? n2(1+V®Bcosd )
We= ) - exp |——— . dé, . (D7)
IneV2r Yo 1—®ycos’d 207 (1 —Pdycos’d )
if, in addition, the inequality
(1—®gn*> 1 (D8)

is satisfied, it is also possible to carry out similar integration in Eq. (D5) that yields
172

+[1+V®Bco n2(1+V®Bcosd.)
Was= l_f 2s¢+ pl—— ——— lerfly)d¢, , (D9)
Iprv2m Yo | 1—Dcosd, 24 (1 —Dgcos’d )
where
GnV'®cosd, (1—®dcos?d, ) 03
=_ - + > (D10)
V(1 —dycosid, ) (1—®ycos?d, )1+ VBB cosd . )

1. Weak mutual correlation of the pulses

Assuming that

g

4

nZ

+—r
(a]+az)tp

n?
1+—= «<1, (D11
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it follows that
-1

2
B, by << 1+12- X <<1,
1

and that inequality (D8) is valid. Extracting the terms of zero, first, and second orders in V'® in the integrals (D7) and
(D9) one finds

2
3)— € B n Gn
r l___ — e
" 3171r\/_ f Cos¢+ [ 2 7? 1'\/-D—+2
2 op? 2n? n* ®dBGn 2+D n?

+eostp, |— 1= |- 22 1+ L2 == —= || lde. .
cosé+ 1 7 8 ” 7| 7V2m(1+D) [1+D #+
(D12)

Carrying out the integration in (D12), one recovers Eq. (6.19).

2. Strongly correlated pulses

In this case 1=~ ® << 1, and (1—®) is treated as a small parameter. The remainder of this Appendix is devoted to a
consideration of this limit.

a. Signals of order n <<7). First we consider signals, characterized by small #, n <<7. To estimate the symmetrical
part of the signal, W, from Eq. (D7), we observe that the expression under the integral sign is not exponentially small
onlyify, <¢, <wm—y_, where y, can be expressed as

V1V o (1—dg)n?
yi="_lw X _.___..i <<1 . (D13)
U] (1£BV®)n?
Taking into account only the contributions which are not exponentially small, one has
= 1 ffr l+‘/63‘305¢+ 1/2d¢ _fy+ 1+\/_<Z—‘€___ l/2d¢
S 3gavar [Yo | 1—dycos, Todo [ 1-dy(1—¢%) M
—~ 172
Y- —_—
Y L L P D14) /
0 1—®(1—¢% ) y

4
Expanding (1+8V® cosé . )'/ in terms of B/ ‘D up to the iifth order in the first term of Eq. (D14) gives good accuracy ;

even for S=1. In this limit the integrals reduce to ’,

1 o2 S(2+Dy)d’B B 5(1+dy)dB? /
Wy=—o1{ 2— — F(d,)+ E (d,) '
ST 3gmVam [ 49, 19202 0 40, 960, 0 !
N 172 (@) b .p? 172
_3 [LEYOB |y e e )y 2O : (D15)
+ (po (l_'(bo) l'_CDO

where F and E are elliptic integrals of the first and second kind,*’ respectively.
Under the assumption that (1—®;) << 1, one can use asymptotic expressions for the elliptical functions, and, taking
into account the fact that

o S2+d,)eB
— —_ — o~ 1+‘/ 172 ‘/_ 1/2
40, 19202 ( DR+ (1—V B2, (D16)

one can arrive at Eq. (6.30) of the text.
For t,; >>7!% it follows that G=1 and ®,=0, and thus y, =0. Although the accuracy of Eq. (D15) is reasonably
good, one can use the more accurate expression (D14) to obtain the background value of W:

1/2

V2
31r1)\/1-'r

4'a|2
ay +a2+2a|2

2a;,
a,ta,

The background signal depends only weakly on the correlation parameter ®, and, independent of ®, differs by at most
10% from the value




4 ' OPTICAL COHERENT TRANSIENTS INDUCED BY TIME. . .. 6221

1
W= ,
" 3gV2r
which would be obtained for noncorrelated pulses (®=0). For a;,<<a,,, one obtains Eq. (6.37), while for
a,=a,;P=1, Eq. (D17) leads to the symmetrical part of Eq. (6.42).
To estimate the asymmetrical part of the signal, W g, we represent it in the form

WAS=A+—A'" ’ (D18)
where, according to Eq. (DS5), A4, is given by

_ 2 pun2 w2 —by .
Ai—ﬁfo d¢+f0 dé_e Esin(2né_lerflia,), (D19)

and a,=a(XB),b, =b(LB). It is not difficult to show that 4, >0, and thus the signal has a positive asymmetry,
when 4, > A4 _, and a negative one in the opposite case.

If (1—®y)n < 1, one has to evaluate this exact expression. However, if (1—®g)n> 1, one can use Eq. (D9) to approx-
imate it as '
172

1+V®Bco
12V ®Bcospy erfly,)dé. , (D20)

4. = 1 fn/z
T 3gaV2r Yr: | 1—®gcosid,

where y, =x(tB).

In the case of small order n,n <<7, which is considered now, it is shown below that W, < Wg; however, there are
certain cases where W ,g qualitatively modifies the signal. Such a modification can occur for =1, corresponding to
equal intensities of the pulses.

First we estimate W ¢ for

(1—dyn’<1, (D21)

using the exact equation (D19). In the limit (D21),
—2i

Vo (a +%a3 ),

and, expanding exp( —b) up to the first order in the parameter (1—®;)%?, one finds

4 /2 w2 27%sin%$ _sin’p
A= d dé_e -
* 3V fO b+ fo ¢-exp 1V ® cosd_cosd

1/561] sing _cosd ;.
{(1£V'® cosd _cosd . [ 1 +D( 1£V® cosd_cosd , )]}°°
N 2V2Gsin’ _cos’d .
{(1£V'® cosd_cosd . [1+D (1 VP cosd_cosd ., )]}%>
G?
3[1+D(1£V® cosp _cosd , )]

erf(ia)=

sin(2n¢_)

(D22)

_1+¢0

Taking into account the fact that the main contribution to the integral (D22) comes from the region 0 <4, <<1, we first
integrate Eq. (D22) over ¢, putting sing , =¢, and cos¢ , =1 to obtain

2G 2 sin(2n¢_)
Ay === do_
* 31r2fo ¢ [1+D(12V®cosp_)]'"?
27%sin%¢ _ G?
X i1+ = -1+ D23
1+V® cosdy | 3[1+D 11V cosd,)] 0 (D23

When D>>1, 4, ~ [max(n,v'D )]~ and leads to a negligibly small asymmetrical signal. Evaluating the integral (D23)
under the assumption that D <<1 and subtracting 4 _ from 4 ., one obtains

2

2nG
Was=-———— | —D+ay’
As 31’(4»:2—1)[ 7

for (1—®) << n?/n? one recovers Eq. (6.39).

] : (D24)
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To estimate W5 when (1—®g)n?> 1, one can use Eq. (D20) and calculate only 4 ,,as 4, > A4 _. If
1<<(1—®yn*<«<n?, (D25)

then y, =n/n<<1, and for the integration range y, <¢,<n/2 in Eq. (D20), it follows that y<<1, and
sin’¢, >>(1—®,). Consequently, 4 , takes the form

1 a2 Gncosg,
A= d
T 3V fu sin’¢, V2D +1 b
= G (D26)
6mnVa(2D+1) ’
which leads to Eq. (6.40) for D << 1.
If (1—®g)n*>>n?, theny, =0; and y <1 for y, < ¢, where
Gn 71— ®)[(1—V®)+D (1—dy)] 1-d, |'?
Yo= T77€Xp [~ 32 <L | — (D27
N(1—®y)(1+2Ddy)] n‘G D,
The main contribution to the integral (D20) comes from the region ¢ . <1. Then one finds
i Yo 2 172
+= 3 ‘/— f 2 d¢+
mV2in (Y0 | 1—dy+ Dyl
2Gn 1 dé,
+ — , (D28)
s fyo (1= B+ Py’ D (1—Dy)+(1—V D) +¢%(0.5+ DDy ]2
which can be integrated exactly. We present here the results in the most important cases. If D> 1,
2Gn
Wis=A4,= , (D29)
AS T 3pnd(1—@)V2D
which is negligibly small. If D <<1, one arrives at
y 2(1—9,)'?
1 0 2Gn 0 : (D30)

= SR 1 —
AT 3V | (1=09) 2 pVall—®g) | |yt 3 +(1—V®)+2D(1—y)] 2

for ®=1 Eq. (D30) reduces to Eq. (6.41).

b. Signals of higher order: n>>n>>1. In this case to estimate the signal one can use Eq. (D9) to obtain W ,g, as the
inequality (D8) is only violated for very small ¢,,, where the variation of the signal is negligible.

For pulses with very different intensities,

Cax > Ay >>1, 1, (D31)
one has
B<<1. (D32)

If B is so small, that

nz
B— <1, (D33)
7

the asymmetrical part of the signal is negligible. For its symmetrical part, Wg, the main contribution to the integral (7)
is from the region defined by (1 —®cos?4, ) =1, leading to the result

e 1 T n? 2
= —— -— 1+
n E— fo exp 2 ( ocos“d ) |d
(2+®y)n? dn?
= 1_ exp | — ;) 0 0"2 , (D34)
Vs 4y 4y
where I is a modified Bessel function, which is Eq. (6.45).

If
2
®>>p>> L (D35)
n
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the result (34) is still valid. However, if
2

1>>85>®0, =5,
n

the major contribution to the integrals (D7) and (D9), which can be used in this case, comes from the region
y=w—¢, <<1, and the PT-3 signal is given by

(3 1 n -1 n n? {
=—— [I=serf [—=[D +(1—-® - l-g|1- d
" 3gavan se 1;\/2[D ( ] fo cxp 29’ [ P Y
e—nz(l—ﬂ)/lqz n . ¢
=& ll—serf |2 (D +(1-®)]” , D3
—T se n\/i[D (1-9)] (D36)

where s is defined by Eq. (2.21).

The signal has a negative asymmetry ( A _ > A ), which can be large, when Dn?/n?< 1.

In the limiting case of equal pulse intensities, @, =a, or B=1, the region y =7 —¢_, << 1 provides the main contribu-
tion to the integrals (D7) and (D9) for any G. Then for G=0 one has

) T S f 2(1+22/4
" 3111rV
- V2 e_n2/4,,z .
Inm

For (1—®y)n2/n?> 1, the signal is given by

(D37)

(3) — 1 minhr,wo—l_l)l/z‘ .y
W= ez Jo Ly |-
0 7 0
1—erf Gn o
N{2(1—=D [ D (1 —=Dg)+2]}!2
(1— )72
:7’——2—0—_-— —_ G" _ ; (D38)
3ntnvie {21 - D )[D (1 —Dy)+2]} "

for ®=1, Eq. (D38) reduces to Eq. (6.47).
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We analyze the macroscopic quantum jumps (sudden interruptions in the fluorescence on a mac-
roscopic time scale) that are produced when a pair of two-level atoms separated by a distance d is ir-
radiated by a strong laser having wavelength Ay, with A;>>d. Included in the analysis is the dipole-
dipole coupling of the atoms, the ac Stark effect, and the role played by a term that is present in the
atom-laser field interaction Hamiltonian when k-d+0 (k is the wave vector of the laser field and d is
the vector connecting the two atoms). Our treatment is based on frequency-resolved delay func-
tions, an extension of a concept developed by Reynaud, Dalibard, and Cohen-Tannoudji {IEEE J.
Quantum Electron. 24, 1395 (1988)], which is shown to be useful to study frequency-resolved photon
statistics. As examples, we study the statistics of the fluorescence produced by the two-atom system
as well as those in the components of the fluorescent triplet produced by a single two-level atom.

1. INTRODUCTION

When identical two-level atoms are separated by a dis-
tance d that is smaller than their resonant wavelength A,
cooperative decay phenomena can occur. Dicke' and
others?3 found that the exchange of photons between the
two atoms produces new eigenstates with new decay
rates. Denoting the ground and excited states of atom i
by le;) and |g;) (i =1,2), these states are a triplet of
symmetric states [|E)=le,e;),IS)=(1/V2)le g;)
+|g,e,,1G)=1g,8,)), and one antisymmetric state
(1A)=(1/V2)le,g,)—I|g,e;))]. These states are
shown in Fig. 1. When A,>>d, the system, initially excit-
ed by an incoherent or a weak coherent field to state |E ),
can decay .o state |G ) via state |S ) with a rate ['g=2I"
(T" is the decay rate of a single atom). As can be seen
from Fig. 1, a two-peaked fluorescence spectrum centered
at ootV is produced when the system undergoes the
|E)—|S)—|G) cascade.

Cooperative effects in resonance fluorescence produced
by the two-atom system when it is continuously excited
by a strong coherent laser was studied by Senitzky* and
others.> They searched for the existence of extra side-
bands not picsent in the single-atom fluorescence spec-
trum (Mollow triplet).® An interpretation of the spec-
trum was provided by Freedhoff.” She calculated the
fluorescence as arising from transitions between dressed
states of the two-atom plus laser-field system and ob-
tained a spectrum containing seven peaks.

In most treatments of the problem, the atoms have
been considered to be so close as to render the antisym-
metric state optically inactive in the sense that the decay
rate ", fcrthe [E) —| A4 ) and | 4 ) —|G ) transitions is
set identically equal to zero. The decay rate I" ; is ap-
proximately given by T ,=(27d /AT /5(<<I).2 As
will be seen below, this small but finite decay rate can
lead to macroscopic quantuni jumps (MQJ).2~!* The ori-
gin of the MQJ is the metastability of the antisymmetric
state | 4 ); once the system is shelved in this state the

41

fluorescence produced by the |E)—|S)—|G) cascade
is interrupted for a time interval on the order of ' !

In this paper, we analyze the MQJ produced by this
cooperative atomic effect. Recently, this effect was par-
tially incorporated into the problem “MQJ due to two
three-level atoms” by Javanainen and Lewenstein.!> We
extend their work by including effects relating to the en-
ergy shifts of states |[S) and |4 ) resulting from the
atomic dipole-dipole interaction. Moreover, we allow for
an additional mixing of the symmetric and antisymmetric
states produced by a term in the laser-field—atom interac-
tion Hamiltonian that is present when k-d+0 (k is the
wave vector of the laser field and d is the vector connect-
ing the two atoms). The former effect is important be-
cause the |E)«>|S) and |S)«<|G) transitions are no
longer resonant with a laser tuned to w; the energy shift

FIG. 1. Energy diagram for a two-ato..; composite system.
When the atomic separation d <<Ay=27d/wy, Ts=2T,
T, =(2md /A,}*T'/5, and V =(2nd /Ay, 3T /4, where T is the
decay rate and w, is the resonant frequency of a single atom.
Transitions between states |E) and {G) (at rate R) are pro-
duced by an incoherent pump field. State | 4) acts as a shelving
state in the problem of macroscopic quantum jumps.

453 ©1990 The American Physical Society
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V =(2md /Ay) 33T /4 is much larger than T, in the same
limit where state | A) becomes metastable. The latter
effect is also important because it drastically alters the
duration of the bright and dark periods. Our analysis is
based on so-called frequency-resolved delay functions (an
extension of a concept introduced by Reynaud, Dalibard,
Cohen-Tannoudji, and others),'' ~!* which is shown to be
very convenient in analyzing quantities such as
frequency-resolved photon statistics (FRPS).

The paper is organized as follows. In Sec. 1I, we as-
sume an incoherent pumping of the |E )«»|G ) transition
and analyze the statistics of the bright and dark periods
of the fluorescence. The FRPS in a bright period is cal-
culated in Sec. III utilizing the method developed in Sec.
II. In Sec. IV, we analyze the statistics of bright and
dark periods for the case of strong coherent pumping
when k-d=0. In Sec. V, we consider the application of
the method developed in Sec. IV to two problems in
FRPS in a dressed-atom picture: fluorescence photons
produced by a single two-level atom and by the two-atom
system considered in this paper. Finally, in Sec. VI, we
consider a coupling of the antisymmetric state to the
symmetric states by the laser field when k-d+0 and show
how this alters the statistics of the bright and dark
periods considered in Sec. IV.

II. INCOHERENT PUMP

We first consider the two-atom system irradiated by a
strong incoherent pump which couples states |[E) 2nd
|G ) directly with rate R (see Fig. 1). It can be shown
that this is a good model when a reasonably strong broad-
band laser whose center is tuned to the transition fre-
quency of each atom is used [see the argument below Eq.
(28) in Sec. IV]. When I'q,R >>T ,, this system exhibits
two phases in its fluorescence: a bright period (BP), in
which repeated cycling through the channel
|E)—|S)—|G) produces many fluorescence photons,
and a dark period (DP), in which the system is shelved in
the metastable state | 4). A bright period begins (ends)
when the system jumps from state | 4 ) to state |G ) (state
|E) to state | 4 )). Therefore, to determine the probabil-
ity distributions Pg() or Pp(7) of the duration 7 of a sin-
gle BP or DP, respectively, we must find the time delay
between successive transitions. The distribution Pg(7) is
detern.-ued by the delay between an |4 ) —|G) transi-
tion and the next |E)—|A) transition, while Py(7) is
determined by the delay between an |E) —|A) transi-
tion and the next | 4 ) — |G ) transition. The calculation
starts with rate equations

dm=-miyr, + ST, (M

dt J

where I1,(¢) is the population of state i) at time t and

[, is the transition rate from state [i) to state lj?
(i,j =E,S,G, A4), which can be written in matrix form as
0rs R I,
0 0 [y 0
F''=igk 0 o o {2)
0 0T, O

The solution for II,(¢) includes contributions from any
number of possible pathways leading to a final state pop-
ulation I1; at time z. For example, suppose that the sys-
tem decays from state | 4) to state |G ) at time t =0 (a
BP begins at time ¢+ =0). The population 11 ,(¢} obtained
by solving Egs. (1) and (2) with the initial condition

G(O)——l includes contributions from pathways such as
l l 12 13 1

IG)—l-IE)—>iA) la)ﬁlm—»u)-*)c;)_.w)
—|A4), etc. In the IG)—»IE)

'z
— | A) pathway, the first BP ends and the first DP be-
gins at time ¢,, with no further transition between times
ty f t fs

In the [G) > |E) > |A) - |G) =~ |E)

0=t <ty -+ =1

t, and
l

5
— | 4) pathway, the second BP ends and the second DP
begins at time t =t, with no further transition between
times t5 and . Note that in both pathways, any number
of transitions |E)—|S)—|G)—|E) is allowed before
each transition to state |4 ). In order to calculate the
duration of a single BP we need to separate out the con-
tribution of the first decay to Il 4(¢). To do this, we pre-
tend that the system will never escape from state |A4)
after the first [E ) —| 4 ) decay. This corresponds to set-
ting I' ;=0 in Eq. (2), and solving Eq. (1) for I ,(¢) with
the initial condition I1;(0)=0. We designate this popu-
lation with a prime, I1,(z), to distinguish from the true
population of state |4 ). The crucial point in setting
[ 46=0 in Eq. (2) is that it in no way influences the dy-
namics of the system for times before the first [E) —| A )
decay. A quantity W(E — 4 /G ;t) defined as the proba-
bility per unit time that, starting from state |G ), the sys-
tem decays to state | A4 ) for the first time at f, can be
found through
d

W(E—»A/G;t)=;ﬂ'4(t). (3)

When I'g,R >>T ,, a simple calculation using Egs. (1),
(3), and (2) with " ,; =0 yields

r,R(R—B)
2B(R +T5s—B)
I ,R(R+B)
" 2B(R+T+B)
Xexp[ —(R + s+ B)t]
RT

4
+ 3R+rsexp[ RT 1/(3R + T[],
4)

W(E—A/G;t)= exp[ —(R + s —B)t]

where
B=(R’—RT,)"?.

From Eq. (4), it follows that W(E —- A /G ;t)=0 in the
transient regime t << R ', reflecting the fact that it takes
a time ~R ! for the system to be pumped from state
|G ) to state |E ), from which it can then decay to state
|A). In the third term of Eq. (4), the factor
R /(3R +T ) can be interpreted as the quasi-steady-state
population (IT¥) that state |E ) would have if a decay to
state | 4 ) were forbidden. The appearance of this factor
is related to the fact that fast transitions among states
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|E), |S), and |G ) drive their populations to the quasi-
steady-state values long before any [E)—|A) decay
occurs.

The probability distribution function Pyz(7) for the
duration 7 of a single BP is equal to the probability that,
starting from state |G ), the system will not decay to state
| A) until time . Thus we can write Pg(7) in terms of
W(E— A/G;t)as

Py(r)=1— [ ‘W(E— 4/G;ndt . 5)

By using Egs. (4) and (5), one sees immediately that both
the first and the second terms in Eq. (4) do not contribute
in the limit ['¢,R >>T ,; in this limit, we find

3R +T

— 6
RT, ~’ ©

Py(r)=expl—7/7p), T5=

where 7 is the average duration of a single BP. The in-
verse of the average duration of a single BP, 75, is sim-
ply equal to the quasi-steady-state population of state
|E ) [given by II¥=R /(3R +T'g)] multiplied by the rate
[, for the [E)—|A) decay. As R /[ increases, 75 de-
creasles, and eventually saturates at a value equal to
ry'.

In order to find the analogous probability function
Pp(1), we apply a similar method [setting I';z =0 in Eq.
(2) and solving Eq. (1) for Il;(¢) with the initial condition
IT ,(0)=1]to find

W(4d—G/A;)=T yexp(—T ,1) ™
and
P,,(r)zl—fO’W(A_.G/A;t)dr=exp(—r/f,,) ,
1
TD:?T , {8

where 7, is the average duration of a single dark period.
Note that the ratio 75/7p=(3R +I5)/R=3 when
R >>T'g. This result is larger than that obtained in a sin-
gle three-level atom (MQJ)* ™! because of the additional
active level |S ) which is present in our problem.

In this section, we found W(E —» A/G;t) and
W(A—G/A;t) in order to calculate Pg(7) or Pp(r).
The beginning or ending of a BP or DP corresponds to a
distinctive decay |E)—|A4) or | A) —|G ), respectively.
Depending on the W function to be evaluated, we alter
Eq. (2) by setting some of the I'’s equal to zero. It is a
generalization of a method developed by others.!' ™13 As
is shown in Sec. III, this approach is useful for calculat-
ing the frequency-resolved photon statistics.

In this problem and related problems, the quasi-
steady-state populations in each period determine the
probability distributions for the durations of a single BP
and DP. Specifically, it has the form P,(7)=exp(—1/7;},
where 7; is the average duration of the period i (i =B or
D). As a simple application of this, we consider the
three-level system depicted in Fig. 2 which has been stud-
ied extensively.®”!* In Fig. 2, R, and R, represent in-
coherent pumps and I'; and I, represent spontaneous de-
cay rates. When R, I, >>R,,T,, this three-level system,

with state |2) metastable, exhibits BP and DP in its
fluorescence: the BP involves transitions Hetween states
[1) and |3), and the DP is triggered by the rare excita-
tion |3)—|2). When the system is in a DP, the next BP
will start following by the transition 12) —|3). A simple
calculation yields the quasi-steady-state population of
state [3) in a BP as IF¥=(R,+T)/(2R,+T ). Since
the next DP is triggered by the transition |3) —|2) with
arate I';,=R,, one finds

75 =(N¥Ty,) '=[(R,+T R, /2R, +T )] 7",

which is equal to (R,/2)”! when R, >>T|. A similar ar-
gument produces that 7, =(R, + ;) ™}, which reduces to
R ;! when R, >>T,. These results agree with those that
have been obtained previously.'

III. PHOTON STATISTICS IN A BRIGHT PERIOD

In this section, we study the FRPS in a BP by using the
method developed in the previous section. We calculate
the delay function D (wgs,7), the probability distribution
describing the delay time 7 between successive emissions
of wgg photons (produced by the |E ) —|S) decays) in a
BP. As is seen in Fig. 1, these photons contribute to the
peak in the spectrum centered at w,— V and can be dis-
tinguished from wog; photons (produced by the
IS )—|G) transitions). In this section, we ignore the ex-
istence of state |4) [all T ;s in Eq. (2) are set equal
to zero] because of the time scale involved
(rsLR '«<rzh.

We assume that an emission of a wgg photon takes
place at time ¢ =0 leaving the system in state |[S ). In or-
der to emit the next photon at time 7, the system decays
from state |S) to state |G ) at any instant ¢, is excited to
state |E ) at any instant after ¢,¢’, and then undergoes an
|E)—[S) decay at time 7 (0<t=<t'<t). Therefore the
delay function for the wgg photon should be written in

11
4
R, T, g
I 2 4
R, I,
¢
a4
2 4
13>

FIG. 2. Energy-level scheme for a single three-level atom
producing macroscopic quantum jumps. The transition be-
tween states |1) and [3) is strongly driven at rate R, while that
between states |2) and |3) is weakly driven at rate R,. The de-
cay rate from state |1) to state {3} is T, and the decay rate from
state 12) to state {3) is I",. These rates satisfy the condition
R,.T>>R,, T, State |2) is the shelving state.
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terms of two types of W functions [W (S —G /S;t) and
W(E—S/G;t)}as

D(ags,7)= [ W(S—G/S;0W(E—S/Gir—dt

9)

where the function W(S—G /S ;1) is the probability per
unit time that, starting from state |S ), the system under-
goes the first |S ) —|G ) transition at time ¢ and the func-
tion W(E —S/G;t) is the probability per unit time that,
starting from state |G ), the system is pumped up to state
|[E) at any time t'(0<¢'<t) and makes the first
|E)—|S) transition at time ¢. The way of finding these
W functions from Eq. (1) and a modified form of Eq. (2) is
the same as in Sec. I, and is not repeated here. A

|

iR

straightforward calculation yields

W(S-—-G/S;t)=Tgexp{—~Tst),

exp(—Fgr)—exp{(—R —Ts/2—C/2)7]

RT r
W(E—-S/G;t)= sexp —R——ZS—+% ,‘
RTs R s ¢
c P 2 2|
(10)
where
C=(4R*+T§)'"2 .
Substitution of Eq. (10) into Eq. (9) yields
HC——0), (1)

D(wgs,7)=
(@ps,T)=—¢ ~R+Tg/2—C/2

where (C-»—C) represents a term substituting —C for
C. This function clearly manifests an antibunching
effect'® [D(wg,0)=0]. (It is impossible to emit the
second wgg photon right after the first emission of a wgg
photon.) In the limit of strong pumping R >>T's Eq. (11)
reduces to a form

D(wgs,7)=Fg[exp(—Ts7/2)—exp{ —Tg7)}, (12)

which still exhibits antibunching. This can be expected
from the cascade structure of the system.'” In other
words, the system still takes a time I'g " to decay out of
state |S) even though the pumping R is so strong that
The)system can be rapidly pumped to state |E ) from state
G).

A knowledge of the delay function D (wgg,7) is enough
to determine the complete photon statistics. The quanti-
ties 7, and Am, defined as the average number and the
dispersion of wgs photons emitted during a time period
T, can be determined from'?

mp=T/7, Ami=mpAT/7?, (13)
where 7 and A7 (the average and the dispersion of the

delay time 7 between successive photon emissions) can be
calculated from Eq. (11) to be

3R+T SR*+2RTg+T}
F=——2, AP= o2 (14)
RT R2F§
It follows from Egs. (13) and (14) that
o RT Am? SR*+2RT +T} 1)
mr=T—", mr=m ,
T rg+3R T (rg+3RY

where the factor R /(I'g +3R) can again be interpreted as
the quasi-steady-state population of state |E ). Here, we
find that Am# <, and the photon statistics are sub-
Poissonian. This reduced fluctuation (as compared to a

coherent state where Am2=7i;) can be explained by
noting that D (wgg,7) is a more sharply peaked function
of 7 than the corresponding D function for a coherent
state [D(r)=Texp(—TI7)] so that the time delay be-
tween successive photon emissions is approximately con-
stant. Thus we should detect roughly the same number
of photons in each time interval T. -Sub-Poissonian, Pois-
sonian, or super-Poissonian statistics are usually charac-
terized by Mandel’s Q factor,'® which is defined in terms
of iy and Am# as

Q=Ami/m;—1, (16)

where

<0, sub-Poissonian
Q31=0, Poissonian (17
>0, super-Poissonian .

In our problem, we find, by using Egs. (15) and (16), that

4R(Ts+R) 4
(T5+3R) 9

IV. COHERENT PUMP

The incoherent pump field is now replaced by a strong
coherent pump (laser) field. The laser field is assumed to
be resonant with the transition frequency of each atom
and is strong enough to saturate the two-photon
|G)«—|E) transition. We use a dressed-atom ap-
proach,'® not only because it can account for quantum-
mechanical coherence effects such as the ac Stark split-
ting, but also because it can permit us to interpret the re-
sults in a relatively simple manner. In this picture, we
first neglect the coupling of the two-atom system to the
vacuum which is responsible for spontaneous emission.
After the laser field is quantized, the dynamics of the to-

]
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tal system (two-atom plus the laser field) is governed by
the time-independent Hamiltonian?

H=#ojo]oy +o50; +ala)+#V(cio; +oioy)
+iﬁg(e_'kd/2 ++elkd/2 +)0+HC , (19)

where o (o) is the atomic ralsmg (lowering) operator
of the ith atom (i =1,2) and a Y(a) is the creation (annihi-
lation) operator of the laser photons. The first line in Eq.
(19) represents the free energy of the atoms and the laser
field. The second line represents the atom-atom interac-
tion which is responsible for the energy shifts ¥ shown in
Fig. 1. The third line represents the atom-field dipole in-
teraction, with coupling constant g exp( + ik-d/2), where
+d/2 are the positions of the atoms and k is the wave
vector of the laser field. The eigenstates for the Hamil-
tonian (19), called dressed states, are superpositions of
products of atomic states and field states. In this section,
we assume that k-d=0, so that the atom-field coupling is
identical for both atoms. When k-d=0, the coupling in
Eq. (19) involves only the symmetrical atomic states [i.e.,
only ifig(a; +0; )a +H.c. appears]. In this case, the
dressed states are found to be’

cos@

I1,n)y="2=(|E,n —2)—|G,n))—isin6|S,n —1) ,
VH
lz,n)=—-(lE,n—2>+|G,n>),
20)
sinf _ . _ (
13,n)= ‘/_(IE n—2Y—|G,n))+icosf|S,n—1),
l4,n)=|4,n—1),

with the corresponding eigenenergies
E,,=fj{nw,+{(V2+ Q%)+ V1),

E, =#nwy) ,
e ¢ @1

E,,=f{nwy—[(V1+0})'*=V]},

E,,=#no,— V),

where n (n =1,2,...) is the occupation number for the
laser field state and () is the usual Rabi frequency which
can be written in terms of g and 7 (the average number of
laser photons) as

Ne=4aga'/?. (22)

Note that we exploited the quas:classncal character of the
laser field by evaluating Q, at 7.! 9 The factors cosf and
sinf are functions of Qg and V

[ +aR) -y
cosg== ,
AVI+0})2
(V+0h)V2+v 29
sing= 11 2 172
AVI+0%)

Energy levels of these states are shown in Fig. 3 and form
an infinite ladder of nearly degenerate four-state multi-
plets. Adjacent multiplets are separated by the laser fre-
quency oy.

11,n) =———
\

12,n) \
13 ,n) wupmn -y - -

hy
fz '

Y
11,n-1 — \

g u ‘
! n- --L__L
3,1 14,n-1>

FIG. 3. Energy levels of the dressed states |a,n) for the
two-atom plus laser field system. Adjacent multiplets are
separated by the laser frequency wy. Decay rates I',, from state
{1,n) to the lower lying states |a,n —1) (@=1,2,3,4) are indi-
cated in the figure. When d <<A,, the decay rate I'y, to state
|4,n —1) (represented by a dashed arrow) is much smaller than
the decay rates to the other states (represented by solid arrows).

Coupling the states to the vacuum produces states hav-
ing bandwidths on the order of ' or I' ,, and results in
the system’s cascade down the quantum ladder in which
the decays between adjacent multiplets occur with rates
g or T',. Each of these decays corresponds to the
creation of a fluorescence photon whose frequency is
determined by the energy separation between the dressed
states, within the uncertainty given by the bandwidths. It
is assumed that the states in a given multiplet do not
overlap (secular approximation),"’ i.e.,

(Eo,—Eg,)/#>2T(=Tg>>T,) foralla,B. (24)

Under this condition, general relaxation theory dictates
that the cascade of the system can be described as a rate
process among the dressed states

d 4
—M,,(0=—M,,( 3 Iy
dt s y B-l
+ z Mg, (OCgGHY, (25)

B=1

where I1, ,(¢) is the time-dependent population of the

state |a,n) and Ty is the decay rate for the
la,n)—|B,n—1) (aB 1,2,3,4) transition calculated
from®®

r
r:,y=75|<a,n|<a,++a;>|ﬁ,n —1)]2

n=n

n=n

r
+T‘|<az,nl(o,"—a2 B =12 __ . (26)

Using Egs. (20) and (26), we find l“"’ in matrix form as
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1—-D? 1-D D? 1+D

2 s —3 s s T

1_521‘5 0 .!__Zﬂrs ir,

D? 1+D 1—-D? 1-D
l‘(a”)" Trs 3 Cg 2 Ly 4 r,

1+D 1-D

T[‘A ir, Tr, 0

27
where
D =cos?§—sin20=—V /(V1-03%)!"?,

and cosf and sinf are given in Eq. (23). The rows and
columns in matrix (27) are labeled according to Eq. (26).
Again, we evaluated Ff,’]g’ at n =H, so that I'}% is the same
for any pair of adjacent multiplets. The first term in Eq.
(26) represents decays among the atomic symmetrical
states and constitutes the 3 X3 subblock in matrix (27),
while the second term represents decays between the
atomic symmetrical and antisymmetrical states and con-
stitutes the 1X 3 and 3 X | subblocks in matrix (27).

As is seen from Eq. (27), there are 14 possible transi-
tions corresponding to the creation of photons with at
most 13 different frequencies (the {1,n)—|1,n —1) and
13,7 ) —13,n —1) transitions create photons which have
the same frequency wgy). However, when the two atoms
are very close (d <<A), six of the decays (those involving
decays to or from states |4,n )) are relatively improbable.
Consequently, one expects bright and dark periods in the
fluorescence owing to the metastable states |4,n). A BP
corresponds to a fast cascade of the system among the
short-lived states la,n) (@=1,2,3). When a transition
la,n)—{4,n —1) (@=1, 2, or 3) occurs, this fast cas-
cade is interrupted and the BP ends; once a
|4,n ) —|a,n —1)(@=1, 2, or 3) decay occurs, the next
BP starts.

The steady-state and quasi-steady-state populations
[obtained by setting T' , =0 in Eq. (27)] of the dressed
states are found from Eq. (25) to be
ss

=1 (@=1,2,3,4),

0 qs
n=0

In this limit, we also see from Eq. (20) that in a BP the
quasi-steady-state populations of the bare atom states are
equal [[IP=(3 (I, ,)*=1 (i =E,S,G,)]. The only ap-
proximation made leading to Eq. (28) is the secular ap-
proximation (24), which can be written in terms of {1,
and V usi‘n/LEq. (21) as V'V <<y when V>>Q,.
Therefore V' VT <<y <<V is the condition under which
the pumping scheme considered in Sec. Il is valid. Note
that when Qp <<V, the |S)+«s|G) transition is not ap-
preciably driven by the laser field.

We now study the duration of a single BP and DP.

Suppose that at time ¢ =0 the system decays from state
|4,n +1) to state |a,n ) and the state |a,n ) is populated
with a probability p, (@=1,2,3) (the beginning of a BP).
The probability p, is the branching ratio

_ r411
Pa™
3 T

a=|

) 29)

where the I'’s are given in Eq. (27). In order to obtain the
probability describing the duration 7 of a single BP,
Pp(7r), we need to know when the next
|B,n'Y—14,n"—1) (B=1, 2, or 3; n'<n) transition
occurs. Analogous to Eq. (5), we can write Pg(7) as

3
3 paW(B—4/a;t)

Py(r)=1— [ dt
a,f=1

=1—f0fdt

where the function W'(B—4/a;t) is the probability per
unit time that, starting from state {a,n), the system
makes f successive decays excluding those of type
lp,n') —|4,n'—1) (u=1,2,3; n2n'2n—f+1) be-
tween times 0 and ¢ and then decays from state
|B,n —f) to state |4,n —f —1) (B=1, 2, or 3) for the
first time at ¢ (see Fig. 4). It is tempting to try to calcu-

late the function W'/AB—4/a;t) by setting I}’

3 ©
S pe S WAB—4/an) |, (30)
0

af=1 [=

I4,n+)

14,n-f-1>

FIG. 4. The diagram shows a particular cascade which is
characterized by the function W'/ (B—4/a;t), defined as a
probability per unit time that, starting from state |a,n ), the sys-
tem makes f successive decays excluding those of type
lpon')—14,n"—1) (u=1,2,3;n > n'2n — £ + 1) between times
0 and ¢, then decays from state |8,n — f) to state |4,n —f —1)
{B=1, 2, or 3). The initial and final transitions in the cascade
correspond to those out of and into metastable states.
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w=12,3; n2n'2n—f +1) equal to zero in Egs. (25)
and (27). Tempting as it may be, this procedure leads to
incorrect results since it modifies the dynamics of the sys-
tem ot times before the transition to the shelving level of
interest. For this purpose, we introduce a more elemen-
tary branching function w, (1), which is defined as the
probability per unit time that, starting from state |u,n’),
the system decays to state |v,n'—1) (u,v=1,2,3,4) at a
time ¢. Since the branching function above involves only
transitions between adjacent multiplets, it can be calcu-
lated by the same method used in Sec. II. Terms in Egs.
(25) and (27) corresponding to decays to states in the
(n’—2) multiplet are set equal to zero. Note that we still

J

4 t 4
W B—4/at)= 3 fo‘dt,fofdt,_1 e fo At [Waelt Dwelty— 1)) weglty —t,_ Jwpgglt —1,)]
H=1

(&¢,...,

where the summation 3 excludes paths involving transi-
tions |u,n’)—l4,n'—1) @w=12,3; n2n'Zn—f+1).
In order to proceed further, we first take the Laplace
transform of Eq. (32). This yields a simple product of f
functions of the form w,,(s)=T, /(s + 3%_,T,,); each
being the Laplace transform of Eq. (31). Now, the sum-
mation over all possible intermediate states can be done
easily by treating the w, (s) function as the component of
a matrix W(s). We sece from Eqgs. (27) and (31) that these
matrices are identical so that the final result is the matrix
W (s) raised to the fth power. However, the matrix must
be modified to account for the fact that some of the paths
are excluded from the summation. Thus we introduce a
modified matrix, Wy(s) as
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have a right to set these I'’s equal to zero because this
does not alter the dynamics of the system until the system
decays to states |v,n’—1). The branching function is
found to be

4

w,,(1) =%II;.,,._,(1) =[Cexp|— 3 [, .t 30
v=1

In Eq. (31), the prime of the population denotes the
modified population of state |v,n —1) as before. We now
write W' (8—4/a;t) using Eq. (31) by considering all
possible paths during f successive decays as

(32)

f

w,,(s), when (u,v)#(y',4), (u'=1,2,3)

[—}ZB(S)]’AV= (33)

0, when (u,v)=(u',4), (u'=1,2,3).

Note that we did not set I' ., (u'=1,2,3) equal to zero,
which would alter matrix elements of W(s) correspond-
ing to allowed transitions. Thus we write Eq. (32) as

WAB—a/a;0)=L ([ Wy(s)Y )pgwp(s)} ,  (34)

where the symbol L ~! represents the inverse Laplace
transform. Then, substitution of Egs. (29) and (34) into
Eq. (30} yields

3 r r [
Pyin=1—- 3 —=—{ dtl,“l (W) Dogpals) | - (35)
af=1 3 T, 0 f=0
a=1
[
This formula is exact. However, in the limit I' ; << g, e 41 & ’
this reduces to Pplr)=1 52:‘,' fodilf fgo([!i’o(s)] )aswg(s)
3 =expl—71/7p).
PB(T)=QXP - 2 %Fm T :exp(_T/TB) , 3 -1
B 1
= 3 Tyl =T7'. G
1 p=
, _
=3 %rm =3r;'_ This time, matrix W, (s) is defined as
B=1
(36) WS
when (u,v)#(4,v') (v'=1,2,3)
(Wp()),, = 0 (38

The factor of | in the exponential can be interpreted as
the quasi-steady-state populations (28). The reason for
the appearance of this factor is the same as before [see
the argument below Eq. (4) in Sec. II].

A similar calculation yields

when (u,v)=(4,v") (v'=1,2,3) .

We find that Pg(7) and Py(1) are completely indepen-
dent of the Rabi frequency Q; and the energy shift V.
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This results in part from the secular approximation {24),
and, in part, owing to the fact that state |4,n) is com-
pletely decoupled from the laser due to our choice of
geometry (k-d=0). Coupuug of state | 4 ) to the symme-
trical states occurs via spontaneous decay only and does
not involve the Rabi frequency Qp.

V. PHOTON STATISTICS
IN A DRESSED-ATOM PICTURE

We have formulated the probability distributions of
durations of a single BP and DP based on an elementary
branching function w,,(t). However, the real power of
this method will become apparent when frequency-
resolved photon statistics are considered in a dressed-
atom picture.

In this section, we consider a delay function D (w,g,7)
defined as the probability distribution for the time delay 7
between successive emissions of w,g photons. For simpli-
city, let us suppose that the transition |a,n +1) —|8,n)
for fixed pairs of (a,3) and any n creates a photon with a
definite frequency w,g. This assumption corresponds to
the secular approximation, such as Eq. (24), and the
uasiclassical character of the laser field. The first emis-
sion of a W, photon leaves the system in state B,n) (n
can be any integer) at time ¢ =0. Therefore the function
D(w,p7) can be interpreted as a probability per unit

|

_ r
Fap= 402 +8%) [(0Q%+8%)2+8] 0%

Let us calculate the delay function of the w,, photons.
The W ,p,(s) matrix in Eq. (40) takes the form

Ty Ty,
s+Iy+ry, s+r+ryp,
Wints)= Ty (42)
0 -
s+ +Iy

Substitution of Eqgs. (42) and w,,(s)=T;, /(s + T, +T5;)
into Eq. (39) with the use of the formula

f_of
7 af ba c
ab a-—c
0c| |0 ¢/
yields
I'aly
Diw,,1)= [exp(— Ty 7} —expl —F 7] .

B =Ty
{43)

This function clearly manifests the antibunching effect
D {(w,,,0)=0, simply explained by the fact that the emis-
sion of a w,, photon at time ¢ =0 projects the wave func-
tion of the system to one of the dressed states f1,n) so
that the system is unable to emit a photon created by the

time that from this initial state |8,n ), the system makes
any number (f) of successive decays while creating many
types of photons exclusive of w,g photons, and eventually
reaches a state ja,n /7, from which the system makes
the final decay |a,n—f)—I|B8,n—f—1) at time 7.
Analogous to Eq. (34), we thus write D (w,g,7) as

]

D(wum)=L;! ([ W o))V )patgts) | (39)
: =0

7
where matrix W, g,(s) is defined as

w,(s), when (u,v)#(a,B)

uv

(Wiaps)], = [0, when (u,v)=(a,B) . “o

As a first example of an application of Egs. (39) and
(40), we consider the FRPS of the fluorescence photons
produced by a single two-level atom irradiated by a
strong coherent laser with Rabi frequency Q; and detun-
ing 8.2'*> The frequency spectrum of the fluorescence
photons is the well-known Mollow triplet.® These pho-
tons are produced when the system cascades down the
ladder consisting of states |a,n ), executing the four types
of transitions |a,n ) —|B,n —1) (@,=1,2: n =1,2,...).
The decay rates I' ;g between the adjacent multiplets were
calculated to be?’

0% [(Q% +82)'2—8)

41

same type of transition |2,n)—|1,n —1) without any
time delay. From Eq. (43), we find the average and the
dispersion of the delay time 7 to be

r,+I 3+
F= 21 l2’ A1'2= 2l2 2l2 (44)
F2,I‘,2 F2lr12
Substitution of Eq. (44) into Eq. (13) yields
o= [l
T T Tptry
=Ir i 45)
8 (0L +8M0%+28%) °
T S T
Amp= |Fip——rr
(Cyp+Ty)
a0 +2802-af |7
= |mr , (46)
2(0% +282)?

where we used Eq. (41) to write I'’s in terms of {2 and .
As can be seen from Eq. (46), the photon statistics are
sub-Poissonian. Mandel’s Q factor can be calculated
from Egs. (16), (45) and (46) to be
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Q“‘Q 1

— TG g T4 47
203 +28%) 2 “n

Q=_

wkich is in completc agreement wih previously obtained
result.??

As a second example, we consider the FRPS in a BP of
the fluorescence of two-atom system considered in Sec.
IV, but now in a dressed-atom picture. This is more com-
plicated owing to the level structure of the dressed states.
For simplicity, we completely ignore the existence of
state |4,n). In order to study the FRPS, we again need
to know the delay function D (@, 7) for a fixed pair of
(a,B) (a,f=1,2,3). We must evaluate the fth power of a
3X3 W, . matrix, whose analytical expression is some-
times impossible to find. However, we can still find an
approximate expression for D (w,g7) by truncating the
sum in Eq. (39), corresponding to the minimum delay
time or minimum number of successive decays between
the dressed states required for the emission of the next
w,g photon. As an example, let us consider w,, photons.
Since the first nonvanishing ([ W,5,(s)}/),; occurs when
f =11in Eq. (39), we predict that

D(wpy,7)=L] w, (5w, (5)]

(3—D)rg |°
4

(3—D)T'g
I ——

4

= TEXp »  (48)

where D(w,,,T) is renormalized as f:D(wlz,T)d‘r=1.
Using Eqgs. (13) and (48), we find that ;=TI (3—D)/8
and Am =(#i1/2)'/? (sub-Poissonian).

VI. COHERENT PUMPING WITH ARBITRARY
GEOMETRY (k-d+0)

In Sec. IV, we considered the special case when
k-d=0. We found that only the transitions |E)<|S)
and |S)«<|G) involving the symmetrical atomic states
were excited by the laser field. This result is also implied
by Eq. (20) where the state |4,n) is the direct product
|A)|n—1). However, when k-d#0, the situation is
modified because the interatomic separation d now re-
sults in an atom-laser-field interaction Hamilton-
ian that varies as ifig[cos(k-d/2)](o, +0))a
+#ig [sin(k-d/2))(o; —o; )Ja +H.c. It is seen that the
coupling now contains antisymmetric as well as sym-
metric components. When k-d << 1, we find the approxi-
mate dressed states to be

QRAk'd
ll,n)—ll,n)—z(l\+§/—)‘l4’n>,
12,nY =|2,n),

3,00 =(3n)+Akd >
e T N Y2

QRAk'd
4n)y=lan)+-—L"2C 1y
[4,n ) =l4n)+ Sy, )

QRAk‘d
——_—_————31 ’
XA

where
A=(VI+03) 2.

The shift of ergenenergies AE, , (@=1,2,3,4) trom the
energies given in Eq. (21) are expected to be small and on
the order of Qg (k-d)%

Modified decay rates between adjacent multiplets can
be found from Eqgs. (26) and (49). It is easy to see that the
decay rates I' g (@,8=1,2,3) involving the short-lived
states |a,n )’ (@=1,2,3) are not changed significantly
from the values given in the 3X 3 subblock in matrix (27),
leading to the same quasi-steady-state populations (28).
The rates 'y, or I'y, involving decays to or from the
metastable states {4,n)’, are different from the values
given in the 1X3 and 3 X1 subblocks in matrix (27). In
particular, we find the modified total decay rate I';, to or
from state |4,n ) to be

3 3
=3 M= 3 T

B=1 A=1
(k-d)? QR(Q%+8V?)

4 (ar-sprp S
£.9)2 Q%(Q%+8V?)
=T, 1+S(kd) RZR 1, (50)
2 (Q%—8v?)

where approximate values for I' , and I'g appropriate to
the limit d <<A; were used (see Sec. I). Analogous to
Eqgs. (36) and (37), we find

-1
3T
B4
D
g=1 3

= =3r’,) !,

= ="', (51)

3
) IR
B=1

The reason for these shortened periods (75,75 ) is under-
stood as follows: the laser excites not only the transitions
|[E)«>|S) and |S)<|G) but also the transitions
|[E)«s|A) and | 4 )«>|G ). Consequently, transitions to
or from the shelving state | 4 ) can be caused by stimulat-
ed emission and absorption (of the laser photons) to the
short-lived states |E ), |S), or |G) as well as by spon-
taneous emission.

VII. CONCLUSION

We have shown that it is possible to observe MQJ in
the fluorescence through a cooperative atomic interac-
tion. The jumps or discontinuous changes of the fluores-
cent intensity occurs on a time scale [','~T " '(A,/d)%.
A restriction is imposed on the interatomic separation
needed to observe MQJ by the finite response time of the
detector. In order to make I' ;' larger than the response
time of the detector, d must be ~1,/100. Current tech-
nology has yet to surmount this difficulty. Ton traps can-
not be used because the Coulomb repulsion is too strong.
Using neutral atom traps or confining atoms in a solid
host may be the best hope of observing the two-atom
MQJ described in this paper.

The formalism developed in this paper can be applied
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to any four-level or more complicated scheme in which
one or more states is metastable. Additionally, our for-
malism can be used to study the FRPS of any multilevel
atom in a simple way.

Note added in proof. After submitting this article, we
learned of a recent calculation of the dynamics of a two-
atom composite system interacting with a weak incident
field.* In that work, the time cvolution of the symmetric

states was studied, including the level shift of the inter-
mediate symmetric state, but neglecting the transitions
between symmetric and the antisymmetric states.
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Using a fully quantized dressed-atom approach, we present a theory and interpretation of the
pressure-induced resonances in four-wave mixing (PIER4) that may arise when three incident fields
interact with an ensemble of two-level atoms. The PIER4 resonances are seen to arise from a col-
lisionally created modulation of a dressed-state population when an operator approach is used to
solve the problem and from a level crossing between collisionally populated dressed states when an

occupation-number formalism is used.

1. INTRODUCTION

In two previous papers,”? we presented a theory and
interpretation of varicus pressure-induced resonant struc-
tures that can appear in nonlinear spectroscopic line
shapes. The first of these papers' concentrated on the
problem of the excitation of a “three-level” atom by four
incident radiation fields. Both semiclassical and fully
quantized treatments were given, and an interpretation of
the pressure-induced resonances in terms of transitions
between atom-field dressed states was developed. In the
second paper,’ a semiclassical dressed-atom approach
was followed. In that approach, the pressure-induced
resonances that appear in four-wave mixing signals on a
two-level atomic transition were interpreted in terms of a
collisionally-induced creation of a modulated dressed-
state population.

It is the purpose of this paper to present a fully quan-
tized dressed-atom approach which is used to calculate
the four-wave-mixing signal produced when three fields
are incident on an ensemble of two-level atoms. This is
one of the problems originally examined both theoretical-
ly and experimentally by Bloembergen and coworkers in
their systematic study of pressure-induced resonances.’®
A more complete list of references to this and other work
is included in our previous papers."?

To be more specific, we consider incident fields having
amplitudes E“ (n=1,2,3), frequencies

Q,=0, 0,=0, 0,=0+5, (1)

and propagation vectors k, (p=1,2,3). We seek the
four-wave-mixing signal generated with propagation vec-
tor

k, =k, +k,—k; (2)
and frequency
0,=0,+9,—-Q, (3)

when these fields are incident on an ensemble of two-level
atoms whose levels 1 and 2 are separated by frequency w

40

(Fig. 1). To satisfy phase-matching conditions, it is
necessary that IkS -0, /c |L << 1, where L is the length of
the sample.

As § is varied, the four-wave-mixing signal exhibits a
resonant structure centered at =0 in the presence of col-
lisions.! =3 This structure is given two interpretations in
this work. First, in terms of operators, it is described as
resulting from a collision-induced creation of a modulat-
ed dressed-state population operator. Second, in terms of
occupation-number states, it is described as arising from
a level crossing between collisionally po; nlated dressed
states. As such, the current approach provides a link be-
tween our two previous calculations. Moreover, it pro-
vides what we believe to be an attractive physical ex-
planation for these pressure-induced resonances.

Section II introduces the basic assumptions and ap-
proximations of the theory. Section III contains the cal-
culation in terms of dressed-state operators while Sec. IV
summarizes the analogous calculation in terms of
occupation-number dressed states.

It might be noted that several other fully quantum-
mechanical calculations of four-wave mixing have ap-
peared.* Our approach differs considerably in spirit from
those calculations.

II. BASIC EQUATIONS AND ASSUMPTIONS

We consider a two-level atom (upper level 2, lower lev-
el 1) interacting with a quantized radiation field. In the
absence of collisions, the Hamiltonian for such a system
is given by

S 2
ky. ko
7 T,
0 i:; w 72 \
\ 1

FIG. 1. The atom-field system considered in this work. The
four-wave-mixing signal of interest is generated with propaga-
tion vector k, =k; +k,—k; and frequency Q, =Q, +Q,—,.
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H=tiwo,,+ 3 (a,a,+1)
u

ik, R —ik R
—ifiy(f.e ¥ Coya,—fre e "alo,z) , (4)
"
where
o, =1 (]! (5)

is an atomic-state operator, @ is the frequency separation
of levels 1 and 2, @, and a, are creation and destruction
operators, respectively, for field mode u, Qu is the fre-
quency of field mode y, and f, is a coupling constant to
be specified below. For the present, the atom is assumed
to be fixed at position R=R,; a generalization to allow
for atomic motioui is included in the final results. A reso-
nance or ‘‘rotating-wave’ approximation is already impli-
cit in the Hamiltonian (5); it is assumed that only modes
with frequencies  satisfying ]Q,‘—-w! /@ <<1 interact
appreciably with the atoms.

We will work in the Heisenberg representation, in
which any time-dependent operator O(7) evolves as
0= —(i/#)[0,H]. From the commutator relations

[alj‘,)‘ak/(t)]zal/(t)bjk_Ukj(t)bli N
[o,(tha,(]=[0,1),a,(N]=0, (6)
[a.(t),a,(D]=0, [aﬂ(t),a;r(t)]=8

R

it follows directly that the time evolution of atomic and
field operators is given by

. . ik ‘R
¢ = -iwo +3fe " tlop—oya, . {7a)
i
. . th R, . tk ‘R, +
Gyn=—3f e " o a, v fre a0 ), (7b)
1"
. A % ik 'R(,
a,=—iSya,tfle o _, (7ch
where
O.=0y, 0. 20 (8)

are raising and lowering operators, respectively, for the
atomic states. It is not necessary to write time-evolution
equations for o ., ¢, and a;, since these operators are
readily determined from

o=1-0,,. {9a)

g, =g 1, (9b)
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’ ! LX) .
dr’ [, dt” exp{ilk,, (R, —R,)—

I8

and

(9¢)

It 1s possible to formally integrate Eq. (7¢), substitute
the resulting expression into Eqs. (7a) and (7b), and per-
form the summation over the field modes. When this
procedure is carried out in the Weisskopf-Wigner ap-
proximation, one finds that Eqs. (7) may be rewritten as®

3
. ) . ~ Ik"R;
6. =—{iy,tivlo _+ 3 f,e " 20, —1a, , !10a)
p |
. ~ : ( ik, R, . L £k L S )
Gp="Y0n" 3 {f, o.a,Tfre a,o. ),
n=
i10b)
— i) {r—1,}
it 3]
a,=a,(tyle
t ik ‘R S ey
‘Jr, re o (e Tl dr (10c)

where ¥, is the spontaneous decay rate of level 2, 1 is
some arbitrary initial time, and « now is assumed to in-
clude any radiative level shifts. In writing Eq. {10a), we
have neglected a term

. ik ‘R
+ 3 fue " 20— 1

po 123

"
and in (10b} a term

ik ‘R, 'tk R, +
— i o * B 0
> (fue o.a,*fre "t ao ).

PEERE

Such terms, while important for maintaining the integrity
of various operator products and commutation relations,
do not contribute to the four-wave-mixing signal to be
calculated below.>®

The physical observable that is calculated is the rate at
which photons are generated in a fieid mode «
(ap#1,2,3) which was originally unoccupied. The num-
ber operator ﬁ(,n(t) for field mode «z,, 1s given by

(1) . (n

a
@y

Using Eq. (10c) and averaging the number operator over
the initial atomic and radiation field states (denoted by
( ),). one finds that the average number of photons emit-
ted into a field mode «a that was initiallv unoccupied i»
equal to

Q, ("=t el e ), (12)




Q .

where we have now included contributions to nao(t) from

an ensemble of N “active” atoms, located at positions
R=R;(j=1,...,N).

In ganerz!, o/ will vaty from one atomic site to another
since both the phase and amplitude of the incident fields
change as the fields propagate through the atomic medi-
um. To simplify the calculation, we neglect all effects re-
lated to field depletion (i.e., it is assumed that the sample
is optically thin). In this limit, there is no R; dependence
for o}, and o4, while o/, mirrors the (unmodified) spatial
phase variations of the incident fields. In particular, it is
shown below that the contribution to o/ (t) associated
with the generation of a four-wave-mixing signal in a
direction k, varies as

ol (=gl (13)
where &/ is independent of R; since field-depletion effects
have been neglected. When this expression is substituted
into Eq. (12), it is seen that the major contribution tu
nq, (1) occurs when QHU:Q\ and k,,owk_,. Both of these

conditions can be satisfied only if
ki=Q,/c, (14)

which is a phase-matching condition for four-wave mix-
ing. Assuming that this condition is satisfied, that
kIR;—R;|>>1 for j# ;' and that the limit t ~ o in Eq.
(12) 1s taken, we show in Appendix A that the rate 5, at
which photons are emitted into mode (k_,£),) is propor-
tional to

N
A 3 (ahal), . (15)
Q=1
Equation (15) can now be generalized to incorporate
collisional effects. In the absence of collisions, &/ is in-
dependent of j and n () varies as N2. With collisions
present, Eq. (15) must also be averaged ovcr collision his-
tories. Since the collision histories at each active-atom
site can be taken as independent, it follows that
(¢/.0).=(a’,) . (&), for j#j' ({), indicates an
average over collision histories). For j=j' the contribu-
tion to n (¢) is of order N and can be neglected in com-
parison with the N? contribution for j#j’. The quanti-
ties {&’, ), are independent of j since each atom, on aver-
age, sees the same collision history. Consequently, one
finds the photon emission rate given by (15) is proportion-
al to a quantity I defined by

L=z .6 )., (16)

where the outer brackets refer to an average over the ini-
tial atomic and radiation field states. We shall refer to [,
as “the signal.™

It is now straightforward to introduce collisions into
the operator equations (10), since the signal depends only
on (o),. The collision model adopted is one in which
collisions do not affect population operators o, and 0,.,
but result in a decay of coherence operators (o . ), and
(o ), with rate T. In this model, Eqs. (10) are
transformed into
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(6.).=—[Hy,+D+iwl{o )
3 ik, R,
+3 fe 20y~ a, , (17a)
u=1
. 2 ik R,
(620 =—v o) — 3 (fe " No,)a,
@n=1
+rre et (g ), (17b)
a,=a,(t)e W =123, (17¢)

where R, is the position of an arbitrary active atom. The
remaining atomic operators are given by

(0.).=(a_).)", (a,)c=1—(0oy), . (18)

Owing to our neglect of field depletion, the last term in
Eq. (10c) has been dropped in arriving at Eq. {17¢).
Equations (15)—(17) determine the rate at which pho-
tons are generated via four-wave mixing into fieid mode s.
It should be noted that the commutation relations (6) are
no longer valid for the operators (o )..” In subsequent
equations, the { - - - )_ averaging symbol is dropped.

III. SOLUTION VIA OPERATOR APPROACH IN
DRESSED BASIS

Equations (17) describe the collisionally averaged in-
teraction of three incident field modes with a two-level
atom. Each field mode u (u=1,2,3) is characterized by a
wave vector k, polarization €,, and frequency Q,, such
that k, =Q,/c. For simplicity, all fields are assumed to
be polarized in the J direction, fields 1 and 2 are assumed
to be incident in the Z direction and field 3 propagates at
a small angle 8 << 1 relative to the z axis (see Fig. 1). In
order to calculate the phase-matched emission with new
wave vector

k, =k, +k,—k, (19)

to lowest order in perturbation theory, it is necessary to
obtain a solution to Egs. (17) for o _( o) which varies as
f1f2f3. The quantities f, (1=1,2,3) can be related to
the Rabi frequencies of the incident fields by

if 5=y, , (20
where
Y, =(p,)E, /2%, 21)

p, is the y component of the atomic dipole operator, E,
is an effective field amplitude for field mode y, and 7, is
the average number of photons in mode p.

It is rather straightforward to solve Eqgs. (17) using a
perturbative approach. One obtains all the standard re-
sults relating to the PIER4 resonances.’ Rather than fol-
low the direct, perturbative approach, we introduce a
dressed-state approach which enables us to give a simple
physical interpretation to both the collision-induced
terms and the background signal. Our approach is per-
turbative in nature, since the dressed states are defined to
lowest order in the 1. itially incident fields.
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To simplify the algebraic complexity of the solution of
Egs. (17), we limit our discussion to atom-field detunings
and decay rates which satisfy

(v, +T)/18,l<<1, (22)

where A, is the atom-field detuning for field mode p
defined by
A =m—Q

H [

(23)

This so-called secular approximation® often corresponds
to the experimental conditions under which PIER4 reso-
nances are observed.® It is further assumed that the vari-
ous Rabi frequencies are less than or comparable to the
spontaneous decay rate ¥, in order to justify the pertur-
bation expansion that is used.

In the context of these approximations, it becomes ex-
tremely convenient to introduce dressed states. We first
consider fields 1 and 3 as the “dressing™ fields and neglect
the presence of field 2. The appropriate dressed states are
the eigenstates of the Hamittonian describing the interac-
tion of a two-level atom with field modes 1 and 3 in the
absence of collistons and spontaneous decay. Specifically,
this Hamiltonian is given by

Hy=H,—ifi 3 [f.(R)o.a,~fH(Rya,o ], (24a)
P K]

e

where
H,=fiwoy+ 3 #Q,(a,a,+ 1) (24b)
o 13
and
ik ‘R
LR = e (25)

Conxsistent with our perturbative approach (see below), it
is necessary to obtain the Jdressed-state eigenkeis only to
first order in the coupling constants f, (u7=1,3). To this
order, one finds that the dressed-statc cigenkets can be
specified by

L j.”(R()) -
Ay )= Linpn) +i 3 - A a1 2mpny)
g 13 i
(26a)
FHR,)
. = 9. 4 R T
Bimyn)=2imn)+i 3 A a“‘l,n],n}),
T H

(26b)

where finy.ny) Ui=1,2)0s an eigenket of H .
In terms of these kets, one can define dressed-state
operators v, ta.f= 4,81 by

’

T X an By, .= AB 27

which. according to FEgs. (26), are lincarly related to
bare-state operators o, defined by

g, 3 i, 4 L2 28
"o

The o, defined by Eq. {28 are equivalent to those previ-
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ously defined in Eq. (5). Using Egs. (27}, (28), and (17),
we find that, to first order in the coupling constants and
neglecting spontancous and collisional decay, the time
evolution of the dressed-state operators is given by

L S .
O 4=0gp=0, O p=(04,) =100 45 . 129)

In order to specify the initial conditions for Eq. (29), it is
assumed that, at =0, the atoms are in their ground
states and a distribution of field modes s present, but
there is no atom-field interaction. The atom-field interac-
tion is then turned on in a time that is long compared
with 'A" ' with this adiabatic turn-on of the fields, Eqgs.
(29) retain their validity even though the atom-field in-
teraction is not constant as has been assumed in their
derivation. The initial conditions are determined by the
density matrix p, which is constant in the Heisenberg rep-
resentation. The density matrix corresponding to the ini-
tial conditions described above is

p=14)(A4p, . 130)
where p, is the density matnix for the radiation fields,
and the s superscript indicates that the bra and ket are
given in the Schrodinger representation.

One must now add to Egs. (29 the contributions to ¢,
arising from spontaneous decay and collisions. To carry
out this procedure, (1) equations for g, are writien in
terms of the bare-state operators ¢, 11,/ =1,2) using
Egs. (26) and (27); (2) the &, are replaced by their contri-
butions from spontaneous emission and collisional decay,
e, 01 =¥ 00, 0= " 7200 6p= — 1y + 0o 6
the g,; are rewritten in terms of the o, using the inverse
of Egs. (26). (Note that greek indices are used to label
dressed states and latin indices to label bare states).

When the above procedure is carried out. the resultant
expressions are algebraically complicated. In ihe so-
called secular approximation (22), however, the equations
take on a simplified form. As long as condition (221 is
satisfied. one can neglect contributions from o ,, and
gy tolowest order in (y>+1)/ A In that limit, 0,
may be set equal to 0, and the time evolution of o ;. ob-
taired by the procedure outlined above, is given by”

R . f“( R())_/-,*,'(R())
Opp =~V 20 3 TTTAA
! H=n

gl LA

i
(quﬂv(T e

t3h

It is necessary to calculate o4, only, since ¢ ,, may be
obtained from o 4y using

U:IA(’[)H . (32)

Note that Eq. (31) is correct to second order in the cou-
pling constants even though the dressed states are defined
only to first order in the coupling constants. For the -
tial conditions 130} in which (& ,,(0V), - 0, second-order
corrections to the dressed-state eigenkets lead 1o contri-
butions to Eq. (31) which are at least third order in the
coupling constants.

We are not interested in the most general solution of
Eq. 311 To calculate the four-wave-mixing signai in the
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—r

k, direction, we seek only that component of ¢ gz which
varies as f,f}. We set o ., equal to 0%, =4 ) 4]
and a, (1) equal to a,(0O)exp( —i{,t) in Eq. (31) to obtain
the appropriate perturbative solution for g 45. The com-
ponent of the “steady-state™ solution for gy which
varies as f,f}, obtained from Eq. (31) and denoted by
ogp'ff3), is found to be

SR (RIa;(0)a,(0)
AA(y,+i8)

applf1f)=2r

(33)

where the fact that Q,—Q,=58 [Eq. (1i] has been used.
Note that o zp vanishes in the absence of collisions.

It 1s now necessary to consider the effect of field 2 to
lowest order. It is convenient to return to the bare pic-
ture and write

0,
¢ =—Uy,+T+ioo +f1(RyH205,— Da,(0)e " .
(34)

This equation is to be solved to first order in f,. The *1”
term in Eq. (34) can be neglected since it corresponds to
linear absorption of field 2, which does not contribute to
the four-wave-mixing signal. In the remaining equation,
we take only the component of ¢, which varies as
{(f1f %) since it is this component that contributes to the
four-wave-mixing signal of interest. Denoting this com-
ponent by ¢..(f, f1), we find that the appropriate equa-
tion to be solved is

6. =iy, +T+iwo

BN

+2£ (R0 7 has(0de (35)

It remains to express o.(f,f%) in terms of the
dressed-state operators. The inverse of Eq. (26b) is
“(R,)
2inn)=Binn)—i 3 ’A—La;‘A;n,,n;)

- 13 H

(36)
which allows us to construct

012,=3 2n,n ) 2n,n,

nony

1

Using the fact that o ,,,}2(1;“ =(), and keeping terms
which vary only as /|, /1, one finds
LESVAVARELITIVEV AR
VRS (R, Ja L (0)a, (0)e"™
4 SRS R Af ‘ ay g, 37)
16001

where o4, (f f 1) is given by Eq. (33), a, (1) has been re-
placed by a,(Olexp( —i€, 1), and 0" , is o, , evaluated
to zeroth orderin f and /', i.c.,

g’y = AVCA (38)

From Eqgs. (35) and (37), it is seen that ¢ has two
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driving terms. On. of the terms is proportional to
ogg(f1f1). This term, given by Eq. (33}, corresponds to
a collision-induced population of dressed state B which is
modulated at frequency 8. The second contribution, also
modulated at frequency 6, corresponds to a modification
of the initial dressed-state population ¢, ; and is present
even in the absence of collisions. The og,(f,f3) term
leads to the PIER4 resonance and the 0", term to the
background contribution in the four-wave-mixing signal.
This separation of the two contributions to the four-
wave-mixing signal is essentially the same as the one
presented in our earlier paper using a semiclassical
dressed-atom approach.’ The pressure-induced reso-
nances result from a collision-induced population modu-
lation of dressed state B, while the background term re-
sults from the field-induced modification of dressed state
A.

It is now a simple matter to obtain the four-wave-
mixing signal. Using Eqs. (35)-(38), one obtains the
steady-state solution

_ 2f,f1f;a§(0)a2(0)a1(0)_

7 A A4, +5)
2[“‘ 4 0’0448”k\.R” [N , (39)
Y, +id o

where k, =k, +k,—k; and 2, =Q,+Q,—-Q;. Combin-
ing this result with Eqs. (16), (13}, (30), and (38), and as-
suming that |8/ <|Al such that A;=A,~A,=4A, one
finds a four-wave-mixing signal

| or %

=8 °If\fof 3P0, ,0, aris +1; (40a)
Joor A
=1y Y-y /At +1i (40b)
Y/ TR
|

where 71, is the average number of photons in mode p.
As has been mentioned in an earlier paper, the four-
wave-mixing signal is produced even for temporally in-
coherent fields, since the signal depends only on the prod-
uct of the 7,,’s. The result (40) is the same as that ob-
tained by standard, semiclassical methods.! ' What has
been achieved in our approach is an interpretation of the
result in terms of the quantized dressed-state operators.
Our perturbative approach is valid provided that
X /ANT +y ) /y << (p=1.2,3).

Equation {40) is not complete. Although fields 1 and 3
have been used as the dressing field, one could have
equally well used fields 2 and 3 as the dressing fields and
arrive  at a contribution to the signal in  the
k, =k;+k,—k, direction. Thus, a term 1. .2 should be
added to Eq. (40). The resulting equation can be general-
ized somewhat to allow fo- atomic motion if one makes
the replacements
A, A Fk, v,

" (41
5 ro—ky v,

where
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k; =k —k; “2)

and v is an active atom velocity. Assuming that |A#l is

much greater than the Doppler width associated with the

1-2 transition, one finds a signal

2

<__._2F—_>L +1
Yy, Hitd—k;v)

L=lxux3 /8% +{le2,

(43)

where ( ), indicates an average over a Maxwellian veloc-
ity distribution'® and {12} represents a term in which
field indices 1 and 2 are interchanged.

1V. SOLUTION V1A OCCUPATION-NUMBER
APPROACH

It is possible to give an alternative interpretation for
the pressure-induced resonances if the occupation-
number states are explicitly specified. In this approach,
the pressure-induced resonances can be viewed as result-
ing from transitions between the various dressed states.

The signal is given by Eq. (16). In the Heisenberg pic-
ture, the density operator p is constant in time. We shall
assume that at t =0, the density operator is given by

p=p(0)}
= ¥ Pln,ny,n)nny,n ) {nny,nl,  (44)

nlnznl

that is, the atom is in its ground state and the field modes
are described by a density matrix diagonal in their occu-
pation numbers. The quantity P{n,,n,,n;) is the joint
probability for n, photons in mode u (u=1,2,3), which
is assumed to be a slowly varying function of n, n,, and
ny (i.e., we assume that 71, >>An, >>1, where An,, is the
standard deviation of n,). In this section, all bras and
kets are written in the (time-independent) Schrédinger
picture. On taking the trace in Eq. (16), one finds

I=3 3 Pin,nyng)
! Llnﬂhn‘

mymams
Xy, 0o imy,my,my)
X{ismy,my,myto ing,ny,ny) .
(45)

Of all the terms which contribute in Eq. (45), the terms
corresponding to the four-wave-mixing signal having
propagation vector k, =k, +k,—k; are those for which
(=1, my=n =1, my=n,-1, my=n,+1. (46)
Thus, the signal generated in direction k. is given by

I= 3 Pinynyn;

"i":”l
Xy = ton - L+ 1o ling,ny,n)|?
47

and the problem reduces to evaluating
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&

(Ln—Ln,—Lny+1o_|L;n,ny,ny) .

Of course, the signal calculated from Eq. (47) is identical
to that calculated in Sec. 111 [Eq. (40a)].

From Egs. (35) and (37), it follows that this matrix ele-
ment of o _ has two driving terms. The first of these
terms varies as

D, =(fy /8 ;n = Lny,ny+1ogglling,ny,ny) .
{48a)

It is shown in Appendix B that this term is proportional
to a matrix element of the density operator g,(t) in the
Schrodinger picture (the tilde indicates a field-interaction
representation''), namely,

D, x(f,/A)
X{B;n,—lLn,—Liny+15(0)B;n,,n,—1,ny),
(48b)

provided one takes the contribution to this term originat-
ing from an initial population in state 1;n,,n,—1,n,
+1). The second term vaiices is

D,=(/\fof} /AM)e™

X ny,na,n5l0% (1 n,ny,ny) (49a)

S\ fof T /A e
XCAsngon,—Lny+1p O Ain,n,—1,n,+1) .
(49b)

Let us consider each of these terms separately.

The term D, vanishes in the absence of collisions [see
Eq. (33)]. For this contribution to exist, a collision-
induced coherence between states |B;n,—1,n,+1) and
iB;n,n;) must be formed. As shown in Fig. 2(a), these
states differ in frequency by a detuning 6. Field mode 2
can then act on the (B;n,n,—1Ln)—(B;n,—1,n,
—1,n;+1) coherence to create a dipolelike coherence
(2sn,—Lny,—Liny+liptt)il;n,,ny,ny) that oscillates
at frequency 2, =Q,—98. It is this coherence which is
the origin of the four-wave-mixing signal. As & is varied,
there is a level crossing resonance in the four-wave-
mixing signal having width (full width at half maximum)
2y, which corresponds to the PIER4 resonance. Thus, in
this picture, the PIER4 resonance arises from a level-
crossing between dressed states that are coherently popu-
lated as a result of the combined action of the incident
fields and collisions. The amplitude of the resonance de-
pends on the amount of 1Bin ~1,n;-+)—(Bin,nn
coherence produced, which, tn turn, depends linearly on
the collision rate . The entire process, which is reminis-
cent of that encountered in trilevel echoes' and coherent
Raman beats,'” can be interpreted rather loosely in terms
of a coherent Raman scattering [Fig. 2(a)]. The term
“coherent™ is used since the various density matrix ele-
ments have a well-defined macroscopic spatial phase asso-
ciated with them.

In contrast to the D, contribution, the D, term [Eq.
{(49)] is nonvanishing even in the absence of collisions. In




&

5 IB;n,-1,n,-1,n3+1>
—1B;n,n,-1,n,>

A
1 A,

1 ——l—IA;n,,n2-1,n3+1>
(a)
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IA;n,,n,-1,n,+1>

(b]

FIG. 2. (a) Collisions create a coherence between dressed states |B;n ,n, —1,n;) and |B;n,—1,n,—1,n,+ 1), starting from state

[Ain,ny—

1,n;+1). The four-wave-mixing signal in direction k; having frequency (2, =) — 8§ appears as a type of coherent Raman

scattering originating in state {B;n,,n,—1,n;) and terminating in state |B;n, —1,n,—1,n,+1), with field 2 acting as the driving
field for this transition. This contribution to the signal exhibits a level-crossing resonance centered at §=0. The effect of field 2 is
shown schematically; the actual role of field 2 is to create a coherence {2;n, — 1,n. — 1,n;+1|5,(.)i1;n,,n,,n,) which is responsible

for the coherent emission at frequency 2 —8. (b) Another contribution to the signal originates in state | A;n,,n, —

l,ny+1), which is

populated even in the absence of collisions. This contribution to the signal can be viewed as a type of coherent Rayleigh scattering
driven by an effective field having propagation vector k,+k,— k; and frequency (1, +£,—Q,=Q—5. There is no resonant structure
centered at =0 associaied with this contribution. These figures are drawn assuming that fields 1 and 3 are the dressing fields; in ar-
riving at the final signal, one must also consider analogous diagrams in which fields 2 and 3 act as the dressing fields.

some sense, this contribution corresponds to a coherent
Rayleigh scattering from dressed state |[A;n,,n,
—1,n,+1) via an effective three-photon operator
represented in Eq. (49) by the product f,f,f}/A%. “he
frequency of emission is 2, =Q,+Q,—Q; [see Fig. 2(b)].
This contribution to the four-wave-mixing signal is in-
sensitive to small variations in 6.

The interpretation given above in terms of the density
operator in the Schrodinger picture is not meant to be
taken oo literally. It is intended mainly to provide some
initial link between the Heisenberg and Schrodinger ap-
proaches to the problem and to connect the present cal-
culation with one given in a previous paper.' In that
work, colliston-induced resonant structures produced in
the excitation of a three-level atom by four fields were in-
terpreted as arising from: transitions between the various
dressed states.

We plan to present a dctailed calculation of the four-
wave-mixing signal using the Schrodinger representation
in a future work. For arbitrary initial states of the radia-
tion ficlds, it would seem that the calculation of the four-
wave-mixing signal is most conveniently carried out using
the Heisenberg representation, as was done in this work.
However, the Schrodinger picture may lead to an alterna-
tive physical interpretati v as to the origin of the
pressare-induced resonances.

V. SLMMARY

Using a fully quantized approach, we have presented a
theory and interpretation of the pressure-induced reso-
nances in four-wave-mixing signals (PIER4) that can
arise when three radiation fields are incident on an en-
semble of two-level atems. In an operator approach, the
PIER4 resonances were attributed to a collision-induced
creation of a modulated dressed-state population. In an
occupation-numnber picture, these rcsonances were inter-

preted as arising from a level crossing between collision-
ally populated dressed states. This type of fully quan-
tized approach can also be applied to the theory and in-
terpretation of the complementary problem of the ab-
sorption and amplification spectrum experienced by a
probe beam acting on a given atomic transition that is
simultaneously driven by a “pump” field.
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APPENDIX A

In this Appendix, we outline the derivation of Eq. (15)
from Eq. {12). We first note that the solution we seek is
one for observation times (1 —t,)>>y, !, since it is in this
limit only that the steady-state solutions are applicable.
We substitute (12) into (13), set 1, =0, change variables to

r=t'"—t", t'=1'), and differentiate with respect to t to
obtain

Al
=SS f[rdrcxp[ik,,“—ks)'(R,-—R,)
A
—itq, —0NrKal o), .

(A

The summations over R/ and R/r are converted to in-
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tegrals over the interaction volume V using the prescrip-
tion

N

S —(N/V)?[dR [dR'.

=1

(A2)

Equation (A1) is to be summed over a small range of Akan
centered about kn0=ks. To carry out this summation, we

use the explicit form for | f aulz, namely,

2rQ, [(p, )

fa = ;
0 AV,
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where (p, ), is a dipole moment matrix element (the in-
cident fields are assumed to be polarized parallel to the y
axis) and VQ is the quantization volume, which is not
necessarily equal to the interaction volume V. The sum
over ka“ is converted to an integral using

3> —[Vo/2nV] [dk,, .

ay

(A4)

Combining Egs. (A1)-(A.

S. 4) and setting R=R—R’, k
=kau—kx, and Q=Q, -

(1, one obtains the rate

Q,l(p, )1 oo
= 3 iy, — NV | =B [k [dR [aR [7 dret®R-(g0 50, (AS)
sk (2m)h
(IO
r

where T is the observation time and Ak is centered about ~ Combining Egs. (A7)-(A9), one arrives at
k=0. (As noted in the text, {0/ ¢/’ ), is independent of _ 22 2 ) e
R and R’ when field depletion is neglected.) L=2me N°kL | (p, )12 37D, (A10)

A typical geometry is one in which k, is along the axis
of a cylindrical interaction volume of length L and cross
sectional area 4. The integration {(AS5) is carried out for
such an integration volume assuming that ¢7 >>L, but
¢T/k?A < 1. If one expands 17 as

(i + k) + ke, +k ] e —Q 7

and compares it with k-R=k x +k, y+k Z, one finds
that, if ¢cT>>L and ¢T/k*4 <1 then the spatial phase
dominates for the transverse directions and the temporal
phase for the longitudinal direction. The consequence of
this is that one can integrate over x,x’ and y,y’ to get
(2m)? A8k, 6(k ) and over 7 to get

rs([h;+k])+(k, +k ]V —Q,) .
When the subsequent integration over k is performed,
one finds

=[N2mQ, Al(p, )y 12 /Hic]

S Jefz -z
. ~

L/2 ~i[k 4
X dz dz’ ' e,
f f”L/Z zaz e < +~0 )I
(A6)
where /=N /V is the active-atom density. When phase

matching is satisfied (k, =€}, /c), Eq. (A6) reduces to

A, =[N 2mQ, Alp, )y 12 /e ILH 6.6 ), (A7)

Electromagnetic energy density in mode s is produced
in the sample at a rate

dW_/dt =(HQ /V A, (A8
and the power exiting the sample is equal to
I.=LdW,_ /dt . (A9

APPENDIX B

In this Appendix, we sketch the transitions from Egs.
(48a) to (48b) and (49a) to (49b). In essence, we wish to
show how to relate matrix elements of o to those of p. In
this Appendix, ail bras and kets, as well as the density
operator p, are written in the Schrodinger representation,
while o is defined in the Heisenberg representation. Al-
though the calculation in the text involves three fields,
the basic ideas can be illustrated by considering a single
incident field. To simplify the notation, we replace
Siexplitk;-Ry—Q,t)] appearing in Eq. (10) by the single
symbol f.

Taking matrix elements of Eq. (10) (along with the cor-
responding equations for o,, and o,) between states
(1;n| and |1;n"), we find

(Lnlopin Y=y, nloylt;n')
+fVn'{lnlo . |l;n'—1)

+f*vu{ln—1lo [t;n'),  (Bla)
(Linfay,lny==y,(Linloy,ll;n')
—fvn'{tinlo,;n'—1)
—f*vn{tin—1lo |;n'), (Blb)
(Lnle hn')=—(ly,+ie){linlo 1;n")
+fV"F'(l;n|022!l;n’—1)
—f\/71_'(1;n\0“\1;n’—1) , (Blc)
(Linlo 1n")y=—y,—io);nlo, 15n")
+f*vn{lin—1laylln")
—f*va{lin—1lo,t;n’) . (BId)
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Using the relationship p=—(i/#)[H,p]+(relaxation
terms), one can obtain equations for density-matrix ele-
ments of p. In a field-interaction representation defined
by

Y I T BN (B T 14
(sqlpling’ Y=Cj:qlplitgye "4 4

(J,j'=12),

matrix elements of 5 evolve as

(Lqlpllig" Y=y 2qipl2:9") + Vg’ 1;qIpl2;q" - 1)
+*Vg{2q—1plLqe") , (B2a)

(2;91p12:9" )= —v(2;,qip|2:9")
—fVa+1{L;q+1'p2;q")
—f*VgF1(2qlpllig'+1),  (B2b)

(2qipl1;9") =—(1y,+iw)(2;9)p!1;9")
+fVq(2qlpi2ig’—1)
—fVg+i{Lg+ilpltig) (B2c)

(;¢1p12;9")=—(Ly,—i0)1;9i512;q9")

+1*Vg{29—1/pl2:q")

~f*Vg' +1{1;qpl;q'+1) . (B2d)

In order to compare Egs. (B1) and (B2), we note that
[a,0]=[a +,0]=0. If ﬁ!eld-depletion effects are neglect-
-1 t
ed, g is equal to a(O ' . By taking matrix elements of
ao and ¢a (or a o and oa’), one finds
ve'{linlo'ln'—1)

=Vn+1n+llolin’),  (B3a)
vn{l:n—1cilin")
=vn'+{;nloll;n’+1), (B3b)

where ¢ is any of 0,0, 0, 0r 0
substituted into Eqgs. (B1), onc arrives at

. If Eqgs. (B3) are

(Linjo,itin)y=y.(Linlo,ilin’)
1" 2 2

+fvai{tinio, in'—1)

+f*n{ln—1liec iLl:n'), (B4a)
(hinigyilin’)=—y{Lin'oyy bin')

—fviu s Ln+1e, in")

vt Wl e’ 1),

(B4h)

(Lnig ‘hn')= =iy, tie(lin o [lin")

SV ey lin - 1)

—f v+ 1n F o, ln') ,  (Bdco)
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(Lnlo " Y=—y,—iw)nlo  [1;n")
+f*Vu (L;n—1loy,ln")
—f*Vn'+1{;nlo,|;n'+1) .
(B4d)

One sees immediately that Egs. (B2) and (B5) are now
identical provided one makes the identifications

(Lnlogny={iqlpli;q’), i=12, (B5a)
(Lnlo _i5;n")=(2;qlpI1;q") , (B5b)
(Lnlo 0" y=(1;q91p12;q") . (B5c)

Although the equations for matrix elements of o and g
are identical, the solutions to these equations differ owing
to different initial  conditions. For example,
(L;nlo,,+oxnll;n’) is identically equal to §,, whereas
(1;qlpl1;q') +(2;91p!2;¢g’) is not even a conserved
quantity owing to cascades associated with spontaneous
emission.

Although the solutions differ, it is still possible to inter-
pret the results in a way that enables us to identify matrix
elements of o with those of p. First we assume that

(2;91p12;9") = (1,9 —1|pl2;q9’— 1)

based on the fact that Ag >>1. In that limit, the p equa-
tions are closed in the subspace involving kets 1;¢) and
12;4—1), with

(L;glplt;q) +<2;9 —1]pl2;g — 1) =const.

By artificially setting this constant equal to unity, one ar-
rives at equations which are identical to those for
{1;nlo|1;n"), provided one adopts the initial condition
(1;41pl1;9") =8,,.. Thus Eqs. (B5) can be considered to
give the correspondence between matrix elements of ¢
and g, in the limit that all population is locked in the
i1;9), 12;g—1) subspace. If one wants to calculate
{1;n—1]o _|1;n) in this scheme, it is simply equal to
(2;n —1lpi1;n ), assuming initial unit probability for the
state |1:n ).

The generalization to three incident fields is straight-
forward. Again the matrix elements of o and j obey
identical equations. One finds that

(Ln,—1Ln,—Lny+lio |[Liny,n,,ny)
can be identificd with
(;n,—Lny— Lny+1lgltin,,nyny)

provided that initial state | 1;n,n,— 1,n, +1 ) is assumed
to have unit probability. The element

(s, —Lny =L+ Ligiling,na,ny)
is proportional to

(fy/AK2n —Liny—Liny +Upl25m,n,—1ny)

which can be reexpressed in terms of the dressed states.
This provides the connection between matrix elements of
¢ and p used in Egs. (48) and (49).
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We present three examples of pressure-induced extra resonances that can be observed in non-
linear spectroscopy: fluorescence of a “three-level atom™ driven by two laser fields, two-photon ion-
ization of a “three-level atom” (plus continuum) driven by two laser fields, and excitation of a
“four-level atom” driven by four laser ficlds. We show that all these extra resonances can be inter-
preted in terms of quantum pathways, each pathway involving a collisionally aided excitation. We
also demonstrate that the two first extra resonances can be obtained with incoherent fields, while
relatively coherent fields are required in the last example.

INTRODUCTION

The field of extra resonances triggered by collisional re-
laxation has for a long time mainly concentrated on the
resonances occurring in four-wave mixing generation.'
However, similar resonances have also been predicted in
nonlinear spectroscopy,’”* the main differences being
that in this case, the signal originates from atomic state
populations rather than from a coherent collective emis-
sion.

The aim of this paper is to present other examples of
pressure-induced extra resonances {PIER) occurring in
nonlinear spectroscopy. We examine PIER which arise
in (a) the fluorescence of a “‘three-level” atom driven by
two laser fields, (b) the two-photon ionization of a
“three-level” atom driven by two laser fields, and (c) the
excitation of a “four-level” atom driven by four laser
fields.

Apart from their intrinsic interest, we show that each
of these examples allows one to specify the role of the re-
laxation process in the generation of extra resonances. In
particular, we show that the extra resonances can be un-
derstood in terms of quantum-mechanical interference
between two pathways, each of these pathways involving
a collisionally aided excitation. In addition, the influence
of the phase of the applied fields will be stressed. We
show that some extra resonances can be obtained with
number states for the applied fields while, in other cases,
relatively coherent fields are required.

I. NOTATION AND ASSUMPTIONS

Let us first consider a three-level atom with a ground
state a and two excited states b and b’ (see Fig. 1). This
atom interacts with two electromagnetic fields of frequen-
cies @, and w,. The first field is nearly resonant with the
a-b transition and we denote by A, =w, —w, the frequen-
cy detuning from resonance. The second field is nearly
resonant with the g-b’ transition and we define its detun-

4

ing A)=w,—wy The amplitudes of these two fields, and
their associated resonance Rabi frequencies, are denoted
by E, and E,, and @, and Q) (Q,=-—d_E,/#
Q,=—d,E,/#, where d,, and d,,. are dipole-moment
matrix elements).

The radiative lifetimes of the excited states b and b’ are
[, ! and I';;', respectively. Apart from radiative relaxa-
tion, the atoms undergo collisional relaxation. We as-
sume that the active atoms are perturbed by a buffer gas
and that the collisions are dephasing in nature, inducing
a decay of the atomic state coherences, but not of the
atomic state population. The relaxation rate of the atom-
ic state coherence i-j due to collisions is denoted by v ;.
We assume that the conditions of the impact approxima-
tion are satisfied and, in particular, that |A,] and [Aj}] are
small compared to 7!, where 7, is the typical duration
of a collision. On the other hand, we assume that |4,|
and |Aj| are large compared to the widths of the a-b and
a-b’ transitions, but that [A,—A)| remains small com-
pared to |A,| and |Aj|. To simplify matters somewhat,
we shall also assume that |Q,/A,| and |2)/A}] are very
small compared to unity. With this assumption, the
density-matrix equations can be solved using a perturba-
tive approach.’

Y
1 1
A 5

- = - ’

FIG. 1. Three-level atom driven by two laser fields.
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The calculations are carried out using either a semi-
classical approach (classical fields and quantum-
mechanical atoms) or a (fully quantized) dressed-atom
picture. In the first case, the atomic density-matrix ele-
ments evolve as®

%Pi} = T%[H’P].‘j —Typij L pppy + Toppp )i [ JHN
(1
where
;=4I +T)+y, 2)

is the sum of the radiative and collisional relaxation rates
and

H=H,+V (3a)

is the Hamiltonian for the system without relaxation.
The quantity H,, is the free-atom Hamiltonian and V is
the electric dipole interaction between the atom and the
field

V=-d-E;. (3b)

d is the atomic dipole operator and E; is the sum of the
incident fields.

To second order in the incident fields, we find that the
populations and the coherence of the excited states are

0? Yre TV
() 71 ba ba
P="F (It— |, (42)
T aA? r,
0122 Yb'a+‘yz’
Piy= VY = =, (4b)
p(21= ﬂ‘n'z l_r}’ba+y:a_7/bb e—nw,—wznenal—oz)
*4a,4; Ty —ib '
(4c)
PEL =P (4d)
where
5=4,—A;. (5)

In these expressions, 8, and 6, correspond to the phase of
the fields E, and E,. If these fields propagate in the k,
and k, directions, we have &,=k,r+¢, and
6,=k, r+¢,, where @, and ¢, are some additional
phases associated with fields 1 and 2, respectively. The
quantities p,, and p,.,- appear as the sum of a collision-
free term and a collisionally aided term. The collision-
free term has been shown to be connected with Rayleigh
scattering at the laser frequency while the collisionally
aided terms leads to fluorescence at the resonance fre-
quency.” A similar separation exists for p,, the col-
lisionally aided term being proportional to the factor
(Ypa T ¥ba—¥sp) Which has been criginally introduced
by Bloembergen, Loten and Lynch.?

Another approach uses a dressed-atom basis. In the
perturbative limit the eigenstates of the dressed-atom

Hamiltonian are®
Q
[N |,N,))= —Z—A——!a,N, +1,N,+1)
1

+1b,N;,N,+1) , (6a)

)
24,

+Ib"Nl+1)N2> ’ (6b)

Q,
[3(N,N,))=la,N;+1,N,+1) + Elb,NhNﬁ 1)

’

02
+—2[b",N,+1,N;) , (6c)
24,

where [i,N,,N,) describes an atom in state |i ) with N,
photons of frequency w; and N, photons of frequency w,.
The quantities Q, and () are evaluated at N, and N,
where N, and N, are the mean number of photons in
these two modes of the field. (£}, and Q; should be re-
placed by Q,ele' and fl'ze'e2 to describe propagation
effects. Since the paper is devoted to single atom effects,
we omit the phase factors). Within the approximations
made in this paper, the stages |1(¥,,N,)), |2(N|,N;}),
and |3(N|,N,)) are very close in energy, the separation
between |1(N,,N,)) and [3(N,,N,;)) being —#A, and
the separation between [2(N,,N,)) and [3(N|,N,)) be-
ing —#A5. In the dressed-atom approach, collisions in-
duce transitions between the dressed states. The steady-
state values p|; and p,, of the populations of the levels
1{N¥,,N,)) and {2(N,,N,)) and of the coherence p,, be-
tween [1(N,N,)) and [2(N,N,}) are!”

— ‘Q% Yba +y;u (7a)
P 4“ r, ’
Q122 Yba +YZ'0
=— (7b)
Pn 4A’22 r,
Q) Yt Yea Yy
P12 . (7c)

B 44 A) [y —id

One recognizes in (7c) the collisional factor
(Ypa T¥ 00— Yep)y Which is associated with the creation
of a coherence between dressed states through collisional
excitation.’ The values of p,; and p,, result from an equi-
librium between the collisional excitation of the level and
decay by spontaneous emission.’

Actually, the results presented above are only valid for
stationary atoms. For a Doppler broadened medium, the
detuning & appearing in Egs. (4¢c) and (7c¢), as well as else-
where in this paper, should be replaced by
[6—(k,—k,)-v], where v is the atomic velocity. For the
time being, we assume that |(k,—k,)-v|<<T,, for all
atoms in the sample, justifying our neglect of the residual
Doppler shift (k,—k,}-v. The modifications of the re-
sults that would occur if 1(k, —k;)-v|> T, is discussed
in the Conclusion.
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II. FLUORESCENCE OF A THREE-LEVEL ATOM

A. PIER resonaace in atomic states populations

The aim of this section is to show how the fluorescence
originating from level b is modified by the field E, acting
on the a-b’ transition. Consequently, we seek a term in
the population of level b which depends on both E; and
E,. Furthermore, we are interested only in the PIER res-
onance occurring around 6=0. This term should origi-
nate from p}3} given in (4c).

Solving the density-matrix equation to fourth order, we
find that the term of interest is equal to

(N — Q07 | (ree)® Y bo
Pis= A | Te vi8  To—io | (8)
16A7A5T, | Tpy+id bh —
where v, is the collisional factor of PIER 4
Yoo =YoatVba Voo - 9
Equation (8) is valid in the limit that
0,05 1 (10)
———— 1.
Al( r,,b' - 18)

Let us split y§,. into its real and imaginary parts
Yoo =(vbe ) Tilyg, )" .

We also assume that the imaginary part of I, (which

corresponds to a shift of the line) is included in 6. We

thus take I, real and obtain for p})

(1;=_(i 0 | (rgy)d e Ty
8A7 AT, |Thy+8° T}, +8°

Pbb (11

This pressure-induced contribution to the fluorescence
from state b can have either a positive or negative sign {of
course, the total fluorescence from level b is positive).
The ratio of the relative magnitude of the PIER given by
(11) and of the background given by (4a) is

P Q7

Pt AT by
Although it is assumed that |05 /A)] << 1, the ratio (12) is
not necessarily very small compared to unity'' since Q}
can be larger than I'y,.. Furthermore, when A} varies,
the background remains constant while pi) exhibits a
narrow resonance around A)—A,=0. Thus the PIER
should be observable on the fluorescence from the excited
state. To have an image of how such resonance should
appear, we have plotted in Fig. 2 the variation of the
fluorescence I emitted from level b versus the frequency
w, for several values of the buffer-gas pressure. The fre-
quency w, of the first source is assumed to remain con-

stant and / is calculated from the sum pi2 +p\}.

(12)

B. Interpretation in the uncoupled states basis

We first interpret this rescnance in terms of interfer-
ence between transition amplitudes. A transition ampli-
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FIG. 2. Variation of the fluorescence I emitted from the lev-
el b vs the frequency w, for various buffer-gas pressures. The
curves have been obtained by assuming that 5., ¥4, Vb0, and
¥4 are real and by taking y5, =¥, =Vs,. We have ), <<}
and |Q;/A5/=10"% We take I',=T, and Q;/T,=20. The
curve a is obtained in absence of buffer gas (y,,-=0). The curve
b is obtained for a pressure of buffer gas such that y,,-=T, and
the curve ¢ for a higher pressure {y,, =5I,). The same arbi-
trary unit is used on the vertical axis of the three curves. The
abscissa corresponds to & =(w,—w;—wytwy)/T,. One can
note that in the range of pressure considered here the signal and
the background increases with pressure. For higher pressure,
the signal saturates while the background still increases.

tude will be represented by a diagram which, at this
stage, should be considered a qualitative method for un-
derstanding the physics rather than a complete method
for calculating the signal. If we consider the excitation of
level b, two possible paths can be considered. The first
possibility [Fig. 3(a)] is a direct collisionally aided excita-
tion with absorption of one photon w,. The population of
level b resulting from this process is proportional to the
intensity of the field having frequency w,, i.e., to Q. In
fact, it is this process that leads to the collision-induced
component of formula (4a) [or to formula (7a)]. A second
possibility is a collisionally aided excitation of level b’ fol-
lowed by a two-photon transition from b’ to b [Fig. 3(b)].
This process alone would lead to a population of the level
b proportional to the square of the intensity of the field
having frequency w, multiplied by the intensity of the
field having frequency w,, i.e., proportional to Q}'Q%. To
get the population p,,, however, one must also consider
the possibility of an interference between these two path-
ways. Indeed, the quantum states of the fields and of the
internal degrees of freedom of the atom are the same in
the initial (|a,N|,N,)) and final (|b,N,~—1,N,)) states
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FIG. 3. Collisionally aided excitation of level b. (a) Direct
pathway and (b) pathway with intermediate excitation of level
b’. The pressure-induced extra resonance on the population of
level b comes from the interference between these two path-
ways.

(in the second pathway the absorption of a photon w, is
followed by an emission of a photon w, with the net re-
sult that N, is not changed). The transition amplitude
for the second pathway should exhibit a resonance when
the two-photon transition from b’ to b becomes iesonant,
i.e., when §=0 [see Fig. 3(b)]. This resonance should also
appear in the interference term. In some sense, the in-
terference between the two pathways of Fig. 3 has an
effect similar to that of an heterodyne detection since the
effect associated with the pathway of Fig. 3(b) appears at
a lower order of perturbation because of the interference
with the pathway of Fig. 3(a).

The origin of the PIER resonance at §=0 can also be
interpreted by a complementary argument. To have in-
terference effect between the two pathways of Fig. 3, we
should also consider the external degrees of freedom since
the atom is not isolated but undergoes a collision.
Indeed, energy is exchanged between the active atom and
its collision partner. In the pathway shown in Fig. 3(a),
the energy received by the atom is E,, —fiw;. In the
pathway shown in Fig. 3(b), the energy received is
E,., —#iw,. In order to have the same change of kinetic
energy of the colliding atoms for each pathway, we must
have

E,,—#w,=E,,—fiw, , (13)
ie.,
5=0. (14)

Thus the interference between the two pathways of Fig. 3
only occurs around §=0.

C. Interpretation in the dressed-state basis

We can also interpret this resonance using the
dressed-state basis. More precisely, when the two-photon
coupling between |b,N|,N,+1) and |b",N,+1,N,) be-
comes important, the states |1(N,,N,)) and |2(N,N,))
should be written’
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’

Q 2 .
——cosf+ ——sinf

UN,,N,)))=—
J 200t 3o

X|a,N,+1,N,+1)
+(cos@)|b,N,N,+1)

+(sinf)|b’, N, +1,N,) , {15a)
|2(N|,N;))=— 2 cose—fl—sin()
24, 24,
X|a,N,+1,N,+1)
—(sin@)|b,N,,N,+1)
+(cosf){b’,N,+1,N,) , (15b)
with
an20= 1% (16)
24,5

Let us now assume that initially, the system is in the state
|3(N,,N;)). We calculate the probability of finding the
system in the state |I(N LN, }) after a collision, our
demonstration being very similar to the one originally
done for the PIER resonances in four-wave mixing.® We
call @ and @' the phase factors due to a collision of rela-
tive velocity v and impact parameter b on the transitions
a-b and a-b’, respectively. The state {1} of the system
after a collision is

Q
l$)=|a,N, +1,N2+1)+5A—'le““’lb,N1,N2+l)

Q .
+—¢"¥p",N,+1,N,) . (17)
24,
From (15a) and (17), we deduce the transition amphtude
to find the system in the state |1(N,,N,)) after a col-
lision,
nl _,o
(LN ,NIP)=——(cosO)e ‘®*—1)
24,
0, .
+—(sinf)e "* ~1) . (18)
24,

The transition probability is thus

QZ
(1N, N ) 2= 2—A]2(c0520)(1—cosd>)
1

2,

12
X[(1—e "N 1—e'®1+c.c.]

(cosB)(sin@)

”

Qy 3
+ ;5 (sin 0)(1—cosd’) . (19
24

When we average the various phase factors over all possi-
ble collisions, we find’




\‘9_1\

(1—e ®)=y,,, (20a)
(1= N 1—e®)) =y, +V5 Vo

=y2,., (20b)
(1—e )=y, . (20c)

Thus the mean collisionally aided excitation of level
|1{N,,N,)) in steady state is

A =Ei(cos29)(y +y5)
1 4A§ ba ba

’
1452
’

1442

+ o7 (sin?0)( 7y +7¥5s) (21)
4A;2 b'a b'a’ -

+

(cos@)(sin@)(y 5, +vis)

In the secular approximation |8| >>T,,, the steady-state
population of state [1(N,N,)), denoted by p,,, is equal
to A,/TI",. To compare this result with Eq. (11), we note
that the validity condition for Eq. (11) [Eq. (10)] is
equivalent to 6 <<1 when 18/ >>T,,.. In the limit 8 <<1,
we obtain

Q07 (yh+vis)
16A2A%8 r,

— Q% (Vba T Vba)
4A% r,

P (22)

The second term of (22) coincides with the result of for-
mula (11) for |8 >>T,,.. This shows that, in this ap-
proach, the PIER resonance results from the contamina-
tion of the dressed state |1(N|,N,)) by a small amount
of the state |b’). The contamination is maximum when
the two uncoupled states [b',N,+1,N,) and
|b,N,,N,+1) have the same energy, i.e., when the reso-
nance condition for the two-photon transition is
fulfilled."

Finally, we note that the phase of the fields does not
appear in the formula (11), which give pj)). This is an in-
dication that the observation of this effect does not re-
quire coherent fields. This indication is supported by the
physical discussion given above, which is done in terms of
number states for the field.

1II. TWO-PHOTON IONIZATION

We still consider the three-level atom a,b,b’, but now
consider the possibility that a second photon is absorbed
to a state k in the continuum. More precisely, we study
the case where an absorption of a photon w, from state b
or an absorption of a photon w; from state b’ leads to
ionization of the atom (Fig. 4).

In the dressed-state basis, we have to add to the states
given by formulas (6) the states |k (N,N,)) correspond-
ing to the continuum (see Fig. 5)

|k (N,Ny))=|k,N|,N,) . (23)

With respect to |3(N|,N,)), the state |k (N,,N,)) has
an energy
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W,

W,

a

FIG. 4. Three-level atom plus continuum driven by two laser
fields.

The coupling between |[1(N,,N,)), |2(N,,N,)) and
|k (N,,N,)) is produced by the electric dipole interaction
having matrix elements

dyE, _Q

<k(N,,N2)IV|1<N,,N2)>=——""7—2=ﬁ—21 . (253)
dyE, @

<k(N,,N2)tV|2(N,,N2)>=—%=ﬁ—2l (25b)

Recall that states |1{N,,N,)) and |2(N,N,)) are popu-
lated only in the presence of collisions.

The state [3(N,,N,)) is also coupled to |k(N|,N;))
through its small components depending on the atomic
states b and b’ [see formula (6c)]

%8, ML,

e (26)
A, A

<k(N,,N2)|V13(N1,N2))=§

This term corresponds to the direct coupling between the
dressed state |3(N,;,N,)) {adiabatically connected to the
atomic ground state) and the continuum. In the absence
of collisions, the photoionization results from this two-

1INy, N,)
2(Ny,Nz)

k(N,N,)

3(N,,N,)

FIG. 5. Energy levels in the dressed-state picture.
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photon coupling. The states of the continuum that are
reached by this direct photoionization mechanism are
those that have the same energy as |3(N,,N,)), ie.,
those for which

E,=#o,to,) . 27)

On the other hand, in presence of collisional damping,
two other photoionization processes are possible. First,
we can have a collisionally aided excitation of
|1(N,,N,)) followed by an absorption of a photon fiw,
[Fig. 6(a)]. The states of the continuum that are reached
by this process have energies

Epy=Ho, . (28)

The second process [Fig. 6(b)] is a collisionally aided exci-
tation of |2(N,N,)) followed by an absorption of a pho-
ton fiw;. The states of the continuum that are reached by
this process have energies

Epy=Ho, . 29)

If we compare the states of the continuum that can be
reached by the different processes, we find, by comparing
formulas (27) and (28) on one hand and formulas (27) and
{29} on the other hand,

Ekk'=‘ﬁw| _ﬁﬂ)():ﬁAl,
Ekk"=ﬁw2_ﬁw6=ﬁA’2 .

(30a)
(30b)

Thus it can be deduced from the assumptions of our mod-
el that the states of the continuum reached by direct pho-
toionization and by collisionally aided photoionization
are well separated in energy and can be (at least theoreti-
cally) distinguished by measuring the kinetic energy of
the ejected electron. On the other hand,

Epor-=H(A,—A}) =15 (31)

02 sin¥f(A—A /2] QP
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FIG. 6. Collisionally aided two-photon ionization. The path-
way (a) involves the intermeliate excitation of level b and the
pathway (b) the intermediate excitation of level b’. Note that
one photon of each mode is absorbed in each process. The
pressure-induced extra resonance in two-photon ionization
comes from the interference between the pathways (a) and (b).

is a small quantity and the two collisionally aided photo-
ionization processes have to be handled together. In the
following, we consider only the electrons that originate
from the collisionally aided processes.

Let us consider a time interval t which is large com-
pared to the time necessary to reach the steady-state
values for p;;, p;;, and p,, [formula (7)). We assume that
the states of the field are number states. The number of
photoelectrons of energy E, generated is equal to

sin?[(Ay— A, )1 /2]

= — +_
PO P A =80 2F 4 PR a4 /28
0,4, o, —iA B p1, . A, &N
+ s lp,zfodte fodt e 7 +e.c. ] . (32)
r*
If we call p(E,) the density of states in the continuum, ol 27 = 3 o
the total number of photoelectrons obtained through a N =-ﬁ_P(E) Tpll+TP22 '
collisionally aided process is
0;02 T yer it
+ a {p,zfodt e +c.c. ]

N'= [dE,p(E})pu - (33)

We assume that the continuum is sufficiently flat so that
we can replace ptEL) by ptE) with
E ~E, +#0w,~E, +#w, The integration of formula (33)
with p,, given by formula (32) then leads to

(34)

The two first terms of formula (34) (proportional to p,,
and p,,) correspond to the photoionization processes de-
scribed by the diagrams of Figs. 6(a) and 6(b), respective-
ly. The last term of formula (34) describes the interfer-
ence between these two diagrams. Here again, we see
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that an interference occurs around §~0, i.e., in a situa-
tion where the energy exchanged with the collision
partner is the same for the two pathways of Fig. 6.

More precisely, when |8t >>1 the interference term
contributes negligibly and we obtain, using formulas (7)
and (34),

N(coll) —2_771 (E Q%Q%_ Y ba +Y;a
! # P 16A2 T,
Q202 Yoo+ Tha
16A% Ly

(35)

On the other hand, when |8|t << 1, there is an interfer-
ence between the two pathways and we find

N(coll)(8=0)
11
27 = Qfﬂ% Yoa T 7 b
=ZpE)| |5
Q207 vy, i,
16A% Ty
0,0,0,0; | ye,.
il e P (36)
16A]A2 rbb’

Here again, the initial state |a,N,+1,N,+1) and the
final state {k,N,,N, ) of the excitation processes shown in
Fig. 6 correspond to pure number states for the field.
The pressure-induced extra resonance predicted in two-
photon ionization does not require coherent fields.

We should also note that the effect calculated here
would probably not he easy to observe. It is essentially a
“‘gedanken” experiment suited to show the influence of
the interference between collisionally aided diagrams.
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Even if the interference process appears more intelligible
in Fig. 6 than in Fig. 3, we think that the process de-
scribed in Sec. II is more suited to an experimental inves-
tigation.

IV. TWO-PHOTON ABSORPTION
OF A FOUR-LEVEL ATOM

The last example that we will consider is a four-level
atom (Fig. 7) driven by four laser fields. The new fields
E, and E, (having frequencies w; and w,, respectively)
drive the b-c and b’-c transitions, respectively.'> The de-
tunings from resonance are denoted by A, and A},

(37a)
(37b)

hA3=ﬁ(D3_ﬁ(0tb ’
A, =i, —fi,y -

We assume that the single-photon detunings |A,| and
|Ajl and the two-photon detunings |A,+A;l and
|A,+ A4l are much smaller than 7. '. For the sake of

simplicity, we also assume that

o twy=w,twy . (38)

re thue

~ car e

The detunings from the two-photon resonance a
the same for the two possible excitation paths
(&, +A;=A3+A},). We calculate the population p'* to
fourth order in the field amplitudes. We denote by (1,
and Q; the Rabi frequencies for the b-c and b'-c transi-
tions (3=—d, E,/#, Qy=—d, E,/fi}. Besides the
terms proportional to 2202, which correspond to the ex-
citation through level b, and those proportional to
Q3Q}%, which correspond to the excitation through b’,
there are terms depending on Q,0Q50,Q; which corre-
spond to an interference between these two pathways. It
is those terms, denoted by p.!, that we consider now. Us-

ing perturbation theory, we find

h— Q050,08 ico,+0,-6,-8, 1 1 1 1 1 1
« 16T, oo =18 Ty —i(A;+A8y) T —iAy  [h+HiA) TL+i(A+AY) T2 +iA,
a 1
LA L L L ‘ +ee (39)
rbb'_lﬁ rba_lA| F;'n+1A2 Fcb'—iAt r:b+lA3
Regrouping the terms, this expression can be written
o D08 g, v6,-6,-6,)
« 16I",
% 1 1 1 1
Py —iBy T ~idy | T, —i(B+A43) Ty, +id)
1 1 1 1
[g,+idy Th+iA, [T +i(A+Ay)  Th—id,
ool + % +ilA,—AY)
. Yool ch cb 3y~ 48] tec (40)

(T = iU Ty —i A NT Ry HiANT =i AT +iAy)

Using the relation (A, — A= —(A; — A))= —8, we finally obtain
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919393939i(6'+63-92_84) l

(N—

pCC

16T (T, —iA T}, +iA}) | () +(A,+A,)

where yJ,- and y?, are defined by expressions similar to
formula (9) and

Yoo =Yep T Ve — Voo - (42)

Let us now discuss Eq. (41). In the absence of collisions,
all the yfj are equal to zero and the only term that
remains is the two-photon term centered at A, +4;=0."

i
2l
" Vb 4 (yep)*
[rm _I(Al +A3)][rcb'—lA;] [r:a +I(A1+A3)][r:b +1A3]
YZb‘ rc+7’ib'
+ +c.c. ,
(Foy— i T o +idy; | | Tpp—id “D
f
, , i6,+6,~6,-8,)
L . Fet7i
cc ) . A+yYe v | »
]6FCA‘A2A3A4 rbb' 18
(43)
where
y AsA; 4, Ay

This term represents the interference between the two
pathways for two-photon excitation via fields w,+w, or
o, tw,. Once collisions occur, there are several new res-
onant features centered at A,=0, A;=0, and $=0. Let
us first note that the second term of formula (41) is relat-
ed to a collisionally aided excitation of the coherence be-
tween levels ¢ and b’ (see Fig. 8) identical to the one used
in the four-wave mixing generation of Ref. 15. In other
words, the two pathways that interfere are associated
with a collisionally aided two-photon absorption [Fig.
8(a)] and a collisionally aided single-photon absorption
followed by the absorption of a photon w, [Fig. 8(b)].
Similarly, the third term of formula (41) is related to an
interference between the two pathways shown in Fig. 9.

Finally, we find that the resonance centered at =0
(which is analogous to the PIER 4 resonance') arises
from the last term of formula (41). In particular, if we as-
sume that the fields are detuned from the single-photon
and two-photon resonances (|A;/>>T,, A} >>T .,
|A|>>T,,, |83 >>T,.,, 18,+4;/>>T,) we find that
Eq. (41) reduces to

C ————————————
v/
W
b_L_ ‘
&_,/ |
W,
W,
a

FIG. 7. Four-level atom driven by four applied laser fields.

=2, ————=+viy~ Y% -y .
A +AL) Yoo~ Veb A +4, Ve a,+4,
(44)

The background term A grows linearly with the pressure.
The term exhibiting a resonance at §=0 has a numerator
which grows quadratically with the pressure, while the
width of the resonance increases linearly with pressure.

The resonance at §=0 is also obtained if we consider
the situation where the two single-photon transitions
from b to ¢ and from &’ to ¢ are nearly resonant, but that
|A,| and |A3| are very large. In this case, the resonance
at =0 is very similar to the one described in Sec. III for
the two-photon ionization. However, there are some
different features. In particular, there is a phase depen-
dence in formulas (41) and (43) that was not present in
formula (36). Let us first note that p' is a function of the
point r unless one assumes that

c
collision !i__

]
[}
:

W, : W,
I
' ’
| b

collisigg
Wy
a a
{a) (b)

FIG. 8. Collisionally aided excitation of level ¢. The path-
way (a) corresponds to a collisionally aided two-photon excita-
tion, while the pathway (b) is associated to a collisionally aided
two-step process with intermediate excitation of level b'. The
interference between these pathways leads to a pressure-induced
extra resonance centered at A;=0.
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FIG. 9. Collisionally aided excitation of level ¢. The interfer-
ence between the two pathways leads to a pressure-induced ex-
tra resonance centered at A;=0.

k,+k, =k, +k, .

If this condition (similar to the phase-matching condition
of four-wave mixing generation) is fulfilled, p\” is in-
dependent of r. but still remains a function of the phases
of the field through a factor e NTHTETH This means
that the resonance centered at §=0 vanishes unless the
fields are relatively coherent.

This feature can be understood if we try to describe the
resonance at §=0 as an interference between quantum
pathways similar to the one of Fig. 6. Let us first assume
that all the fields are in number states and that the initial
state of the system is {a,N,,N,,N;,N,). The two path-
ways that should be considered now are associated with
the absorption of one photon w, and one photon w, [Fig.
10(a)] or with the absorption of one photon w, and one
photon w, [Fig. 10(b)]. In the first case, the final state is
lc,N,—1,N;,N;—1,N,), while in the second case, the

y y C
W,

b/

__i!cgllisnon
wi

W,

a a

(a) (b)

FIG. 10. Collisionally aided excitation of level ¢. The path-
way (a) corresponds to a collisionally aided two-step excitation
with intermediate excitation of level b. The pathway (b) is asso-
ciated to a similar process with intermediate excitation of level
b’. The interference between these pathways leads to a
pressure-induced extra resonance centered at §=0.
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final state is l¢,N,,N,—1,N;,N,—1). Since the final
state is not the same for the two pathways, there is no
possible interference between these pathways.'® On the
other hand, if the nondiagonal matrix elements for the
density matrix of the fields are not zero (as it is the case
for quasiclassical fields),'” then the number of photons is
not fixed in the initial state and the interference can be re-
stored. For example, let us assume tnat the initial state is

W)= 3 c(N])ey(Nycy(Nyey(Ny)

NI NJLNLN,
Xla,N|,Ny,N,Ny) . (45)

The probability of finding the system in the final state
l¥,)=1Ic,N|,N;,N3,N,) is proportional to

[{ Ul M2~ e (N +1)c,(Nyey (N3 +1)
Xy NN, + DN+ D] 72
Fe N ey (Ny+ ey (N e (N + 1)
XN, + 1N+ D)2 (46)

To obtain the probability to find the atom in state ¢, we
have to sum formula (46) over N,, N;, N;, and N;,. We
see that the interference term is equal to zero unless we
have ¢;(N;) and c¢;(N; +1) simultaneously different from
zero for the four fields.

In other words, to obtain a resonance on the popula-
tion of the c level, we have to start with a coherence

(AN + LNy, N+ LNpl AN | N+ LN N +1)

where [ 4,N,N,,N3,N,) is the dressed state adiabatical-
ly connected to the uncoupled state ja,N,,N,,N;,N,).
Then collisions act on this coherence to create

(B,N,Ny,Ny+ 1N lpiB" N\ Ny, N N+ 1)

where |B,N,,N,,N;,N,) and |B".N,,N,,N;,N,) are
the dressed states connected to |b,N|,N,,N;,N,) and
{b',N,N,,N;,N, ), respectively. Finally, the action of
the fields 3 and 4 leads to a population
(¢,N|,N;,N;,N,lple,N\,N,,N;,N,). In this approach,
which is essentially similar to the one already developed
in Ref. 4, the resonance at =0 arises from the collision-
ally aided excitation of the coherence between the dressed
states B and B’.

CONCLUSION

In conclusion, we have presented three different exam-
ples of pressure-induced extra resonances that can be ob-
served in noniinear spectroscopy. We have shown that
all these resonances can be qualitatively interpreted in
terms of interference between quantum pathways, each
pathway involving a collisionally aided excitation. Final-
ly, we have shown that the resonances can be obtained in
some cases with incoherent fields while, in other cases,

sherent fields are required.

Implicit in our approach has been the neglect of any
effects arising from the atoms’ velocity. As long as the
single-photon and two-photon detunings A, "AY, (4.,
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{A4l, 1A, +A;| are all much greater than the Doppler
widths associated with their corresponding transitions,
one is at liberty to neglect the Doppler shifts associated
with these terms. On the other hand, |8/ is a small quan-
tity compared with |A,] or |Aj|, consequently, one should
include any effects of residual Doppler shifts in all terms
containing 8. The results are then modified by replacing
8 by 8 —(k,—k,) v and averaging over a Maxwellian dis-
tribution of velocities having most probable speed u. If
Ku <<T',. (K=k ;—k,), none of the results are changed.
If Ku >>T,,, the results are modified as follows: (a) In
Eq. (11), the first term no longer contributes and the
second term becomes a Gaussian of width Ku; (b) in Eq.
(34), the PIER contribution no longer varies as ¢ for § ~0;
(c) in Eq. (43), the PIER contribution is again proportion-
al to a Gaussian having width Ku. The ratio Ku /T, is

G. GRYNBERG AND P. R. BERMAN

-

determined in a large part by the energy separation of
levels b and b'. To observe PIER, it is thus best to have
two nearby energy levels.
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Motivated in large part by the work of Bloembergen and
coworkers, there has been considc¢ -able interest over the past teq
years in the study of pressure—induced extra resonancee, a class of
resonant structures that appear in sgectroecopic line ¢ .apes only
in the presence of collisions (1). What is gm icularly intriguing
abrut the pressure—induced resonances is that collisions, which
are often thought to broaden and destroy coherent structures, are
essential for producing these resonances. Moreover, the
pressure—induced resonances can be very narrov, in some cases
having widths equal to the inverse lifetime cf the ground states of
the atoms which are interacting with the laser fields. It is
relatively simple to obtain theoretical expressions for the
pressure—induced resonances. What has been more elusive, however,
is a physical explanation of their origin.

We present an interpretation of pressure—induced resonances
based on a dressed—atom picture of the atom—field interaction
(2)-(4). Both semiclassical (classical fields -
quantum-mechanical atomsg and fully—quantized (quantized fields-
quantum—mechanical atoms) dressed—state theories are employed.
Using this dressed—atom approach, we are able to show that the
vanishing of the pressure—induced resonances in the absence of
collisions is a direct consequence of the conservation of energy.
The positions and widths of the resonances can be attributed either
to a modulated dressed—state population or to a level—crosasing of
the dressed states.

In order to illustrate the physical concepts, we considera
pressure—induced resonance that is produced in fluorescence beats
§4) ,55) . Atwo—level atom is subjected to two copropagating iaser

ields (Fig. 1). The first field has frequency { and is
detuned by A = ol from the atomic resonance, while the second field
has frequency 8+6§. It is assumed that |§| < 73¢€ |A| (72 is the decay
rate of the excited state) and that |A| is much greater than the
Doppler width associated with the 1-2 transition. If the incident
fields are relatively coherent, it is found that part of the
fluorescence from level 2 is modulated at frequency 6. To lowest
order in the applied fields, this component of the fluorescence,
denoted by I(é), is given by

Fig. 1. Copropagating laser

T — 2 fields having frequencies

_9*_6.. I 1, Q1 and 1+46 are incident on
w " on a two—level atom.

2 Modulated fluorescence from

—_— l ‘ { 1 level 2 is monitored as a

function of §.
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where X, is a Rabi frequency associated with field f and T is a

collision rate associated with the atomic coherence py3. The
modulated fluorescence consists of a background term (present even
in the absence of collisions) and a pressure—induced term which
exhibdits a resonant structure centered at d=0, having vidth 7s.

To explain the physical origin of this resonance, we use a
fully—quantized dressed—atom approach. To lowest order 1in the
applied fields, the appropriate dressed states are given by

1A;ng,ng> = 10,0 + 0(my) ' 75n-1, 0
+d(ny) |2:0,n~1>

{Bing,n> = |2;n,n> ~ 6*(m+1) | 1;y+1,n>
= #%(na+1)[1;ny,np+1>,

vhere the n'e label the photon number states of the fields,

6(n) = igyn/A,

and g is a coupling constant. Some of the dressed energy levels are
shown in Fig. 2

The structure of the fluorescence beats can now be understood as
follows: In the absence of collisions, all population remains in
the "A" dressed states, since there is no physical mechanism to
provide the energy difference M to transfer population from
statesAto8 Sinceo e 'i:uiri.ige 2ud jAing.ny+i> each contain
an aduixture oY state {2;u;,u;-, they can undergo a radiative decay
to state |A;ni,n3>. The component of the modulated fluorescence
associated with this collision—free contribution is

F
Icf(é) =n?ng 9(“**1)"*(“’*‘)Pn.+1.n,;n,,n,u(") + c.c.,

where pf (t) is the free—field density matrix. There is no resonant
structure centered at §=0. As can be seen in Fig. 2, the
collision—free contribution to the fluorescence occurs at the
laser frequencies.

3 I8iny.np > Fig. 2. Dressed states of the
< atom-field system. Collisions
> couple states A and Bwithin a
{ 2 1Aingnpe1 > ﬁiven manifold (curved arrow).

AAAANAA

% ,Acoherenlce bitvla:en sfatea
y . :ny,nr+l> an ya+l.np
|Asny 41,0, > groduced by the incident fields
eads to background (a) and
Q <] pressure—induced (4) modulated
a fluorescence.

[Aingng >
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with collisions present, states |A> and |B> within a given
dressed—-state manifold are coupled since the collisional
interaction can provide the energy mismatch M between these
states. Radiative decay from level |B;ny,n3> to |A;n;,ny> results jp
fluorescence centered at the atomsc frequency (see Fig. 2 —~recal}
that A+@ = w) . The modulated component of this fluorescence is
g1iven by

[C(ﬁ) = §(ny+1)6*(nz+1) [2[‘/(7,+i6)]

F
x pnﬁl.nz;nl,nrl(t) + C.C,

The amplitude of this collision—induced component vanishes in the
absence of collisions. Owing to the modulation of Pyy» the

fluorescence exhibits a resonant structure centered at 6=0, having
width 7. The modulated fluorescence can be traced to a combined
collisional-radiative process that couples the initial coherence
Py .ny+1,ng;a,ny,0g+1 to the dressed—state population
pB!“l,nﬁB sNy, 09"
It is seen that the fluorescence vanishes unless Pn+i.n #0 for
2

each of the incident fields. In other words. the incident fields
must be phase coherent to produce the fluorescence beats. The same
conclusion would have been reached had we used a semiclassical
dressed atom approach (4). In that case, the collision—induced
modulated signal is proportional to yixa* which vanishes . on
average, for uncorrelated fields. In a manner analogous to that
presented for fluorescence beats. one can use a dressed-atom
approach to explain the pressure—induced resonances that can be -
produced when (a) a three—level atom is excited by four incident
fields 53% ; (b) a four—level atom is excited by four incident
fields (6);: an atom is ionized by four fields (6): and (d) four-wave
mixing signals are generated in active media of two or three—level
atoms. In contrast to cases (a)—(c). in case (d) the signal depends
only on the average number of photons in each incident field; the
incident fields need only be spatially coherent to generate the
appropriate phase—matched emission.
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